Pascal pressure said:
As I think about it some more, I guess the answer to the question should be fairly straight forward:
(p-1) * (v-1) = (p-2) * (v-2)
Even though I think this equation is used for pneumatics, I think it could be applied to hydraulics
Where:
(v-1) = volume of the water in the pipe at 14.7 psi [(p-1) = 14.7 psi]
(v-2) = volume of the water in the pipe at pressures above 3,000 psi minus % compression
Then pressure drop of the water in the pipe = (p-2)
First, this equation can only be used in pneumatics IF the temperature is kept constant.
Second, it cannot be applied to hydraulics. Here is the correct equation:
$$\frac{p_1 V_1 - p_2 V_1}{V_2-V_1} = E$$
Where ##E## is the
Bulk Modulus Elasticity of the liquid.
Reference:
https://www.engineeringtoolbox.com/fluid-density-temperature-pressure-d_309.html
What that equation state is, if a liquid is at pressure ##p1## and gets increased to ##p_2##, its volume will go from ##V_1## to ##V_2##.
In your comparison, both cases have the same ##p_1## and ##p_2## (which is constant throughout the volume of liquid as the pressure increases from ##p_1## to ##p_2##), only the initial ##V_1## is different. Obviously, ##V_2## will be different as well but the ratio ##\frac{V_2}{V_1}## will be constant:
$$\frac{V_2}{V_1} = 1-\frac{p_2-p_1}{E}$$
In your cases (with water):
$$\frac{V_2}{V_1} = 1-\frac{3000-14.7}{312000}=0.99$$
Because one of your pipes is 100 times longer than the other (##=\frac{1000\ ft}{10\ ft}##) and the pipe area is constant throughout the process, then:
$$\frac{L_2}{L_1} = \frac{\frac{V_2}{A_2}}{\frac{V_1}{A_1}} = \frac{V_2}{V_1}\frac{A_1}{A_2} =\frac{V_2}{V_1}(1) = \frac{V_2}{V_1}$$
$$L_{2\ 1000\ ft} = 0.99 \times 1000\ ft = 990\ ft$$
$$L_{2\ 10\ ft} = 0.99 \times 10\ ft = 9.90\ ft$$
So, increasing the pressure from 14.7 psi to 3000 psi in both pipes - everywhere in the pipe - your piston will sink in 0.1 ft with the 10-foot pipe, but it will sink 10 ft in the 1000-foot pipe.
Note also that - as long as it doesn't change during the pressure increase - the area of the pipe doesn't even have to be the same in both cases for this to be true.