Stationary points (roots) of partially derivated function

brollysan
Messages
26
Reaction score
0

Homework Statement



f(x,y)= ln(x+y) -x^2 - y^2

1. Find the partially derivatives
2. Find the stationary points (roots) of the function

Homework Equations





The Attempt at a Solution



Quite simple, except i don't know what to do with the ln part, this is my attempt tho

f'x= 1/(x+y) -2x
f'y= 1/(x+y) -2y

Is this right? I am not sure what the derivative of ln (x+ c) is c= constant

2. Roots= where the function crosses the x-line right? So I simply set f'x=0 and solve it to get the root?
 
Physics news on Phys.org
f'x and f'y are correct. The derivative of ln(f(x)) is f'(x)/f(x). They then want values of x and y where BOTH f'x and f'y equal zero simultaneously. These are the stationary points. Can you find them?
 
If they both equal zero then they must both equal each other right? Then that means x=y?

F'x=0 = 1/(2x) -2x => 4x^2 =1 => x= 1/4

And since x = y then they must both have a root of 1/4...am i right?
 
While i am at it i also need help with a limit problem.

The problem, all variables etc

f(x)= x^2 + 2x

find

lim x->a [f(x) - f(a)]/ (x-a)

The attempt at a solution

The correct answer is 2a +2

Factoring etc i got this far:

[(x-a)(x+a) -2a -2x]/(x-a)

Now i can write this as [(x-a)(x+a)]/(x-a) + -2a-2x / (x-a)

Leaving me with x+a -2a-2x/(x-a) I am stuck with this, how do make it so the last part simply becomes 2?
 
brollysan said:
If they both equal zero then they must both equal each other right? Then that means x=y?

F'x=0 = 1/(2x) -2x => 4x^2 =1 => x= 1/4

And since x = y then they must both have a root of 1/4...am i right?

No. x^2=1/4, not x=1/4. And remember quadratic equations generally have two roots. What are the (x,y) pairs that satisfy this?
 
brollysan said:
While i am at it i also need help with a limit problem.

The problem, all variables etc

f(x)= x^2 + 2x

find

lim x->a [f(x) - f(a)]/ (x-a)

The attempt at a solution

The correct answer is 2a +2

Factoring etc i got this far:

[(x-a)(x+a) -2a -2x]/(x-a)

Now i can write this as [(x-a)(x+a)]/(x-a) + -2a-2x / (x-a)

Leaving me with x+a -2a-2x/(x-a) I am stuck with this, how do make it so the last part simply becomes 2?

Surely you can simplify (-2a-2x)/(x-a). (x-a) is a factor of the numerator.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top