I Statistics proof: y = k x holds for a data set

AI Thread Summary
The discussion focuses on proving a linear relationship y = kx using experimental data points with associated measurement errors. The user seeks to quantify the confidence in the error estimate of the regression line's Y-axis intercept, aiming for a very small error, ideally less than 1.0 x 10^-7. They mention the importance of using the chi-squared statistic as a measure of goodness of fit and emphasize the value of visual inspection with error bars, ensuring systematic errors are excluded. The conversation concludes with the realization that while the task is complex, it is manageable with further study and resources. Overall, the discussion highlights the statistical methods and considerations necessary for validating a linear regression model.
avicenna
Messages
96
Reaction score
8
Simple linear regression statistics:

If I have a linear relation (or wish to prove such a relation): y = k x where k = constant. I have a set of n experimental data points ...(y0, x0), (y1, x1)... measured with some error estimates.

Is there some way to present how well the n data points shows that the relation: y = kx is proven. What I have in mind is that the regression line will give an error intercept of the Y-axis, say e. Say e = 1.0 x 10^-5. What is the "confidence" for this error estimate.

I want to show error e to be very small say <1.0 10^-7. If I the measurement errors of (yi,xi) ... are very small, how will it help to show y=kx to be "very good" where y=k(1+e)x where e is very small.
 
Mathematics news on Phys.org
Google is your friend.

I learned about ##\chi^2## as a measure of goodness of fit. But that was long ago...

[edit] by the way, a visual inspection of the resluts (with error bars) is also a very good idea. Make sure all systematic errors are omitted when drawing the error baars
 
BvU said:
Google is your friend.

I learned about ##\chi^2## as a measure of goodness of fit. But that was long ago...

[edit] by the way, a visual inspection of the resluts (with error bars) is also a very good idea. Make sure all systematic errors are omitted when drawing the error baars
Thanks. I think I now have some idea of what I really wanted. It is not simple straightforward as I thought.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top