Ted123
- 428
- 0
Homework Statement
[PLAIN]http://img222.imageshack.us/img222/2781/statsqk.jpg
Homework Equations
f_{X} (x) = \int^{\infty}_{-\infty} f_{X,Y} (x,y)\;dy
f_{Y} (y) = \int^{\infty}_{-\infty} f_{X,Y} (x,y)\;dx
f_{X|Y} (x|y) = \frac{f_{X,Y} (x,y)}{f_Y (y)}
f_{Y|X} (y|x) = \frac{f_{X,Y} (x,y)}{f_X (x)}
\mathbb{E}\;[X|Y] = \int^{\infty}_{-\infty} x f_{X|Y} (x|y)\;dx
\mathbb{E}\;[Y|X] = \int^{\infty}_{-\infty} y f_{Y|X} (y|x)\;dy
The Attempt at a Solution
Can anyone check that I've done this correctly (specifically check the limits)?
\displaystyle f_X (x) = \int^{\infty}_x x(y-x)e^{-y}\;dy = xe^{-x} \;\; \text{for} \; x\in [0,y]
\displaystyle f_Y (y) = \int^y_0 x(y-x)e^{-y}\;dx = \frac{y^3}{6} e^{-y} \;\; \text{for} \; y\in [x,\infty )
\displaystyle f_{X|Y} (x|y) = \frac{x(y-x)e^{-y}}{\frac{y^3}{6} e^{-y}} = \frac{6x(y-x)}{y^3}\;\; \text{for} \; x\in [0,y]
\displaystyle f_{Y|X} (y|x) = \frac{x(y-x)e^{-y}}{xe^{-x}} = e^{x-y} (y-x)\;\; \text{for} \; y\in [x,\infty )
\displaystyle\mathbb{E}\;[X|Y]= \int^{\infty}_x ye^{x-y} (y-x)\;dy = x+2
\displaystyle\mathbb{E}\;[Y|X]=\int^{y}_0 \frac{6x^2 (y-x)}{y^3} \;dx = \frac{y}{2}
Last edited by a moderator: