Stephen's question at Yahoo Answers regarding an inhomogeneous linear recurrence

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear Recurrence
Click For Summary
SUMMARY

The closed form for the inhomogeneous linear recurrence defined by \(A_n = A_{n-1} + 2n + 1\) with initial condition \(A_1 = 1\) is derived as \(A_n = n^2 + 2n - 2\). This conclusion is reached through symbolic differencing, leading to a homogeneous recurrence with characteristic roots of \(r = 1\) of multiplicity 3. The parameters \(k_1, k_2, k_3\) are determined using a system of equations based on the initial values, resulting in \(k_1 = -2\), \(k_2 = 2\), and \(k_3 = 1\).

PREREQUISITES
  • Understanding of linear recurrence relations
  • Familiarity with symbolic differencing techniques
  • Knowledge of solving systems of equations
  • Basic concepts of characteristic equations in recurrence relations
NEXT STEPS
  • Study methods for solving linear recurrence relations
  • Learn about characteristic equations and their applications
  • Explore advanced techniques in symbolic differencing
  • Investigate other types of inhomogeneous recurrences
USEFUL FOR

Mathematicians, students studying discrete mathematics, and anyone interested in solving recurrence relations and difference equations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find The Closed Form?

A1 = 1
an-1 + 2n+1
I know how to get the sequence but I don't know how to write the closed form.

Here is a link to the question:

Find The Closed Form? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Stephen,

We are given the recurrence:

$$A_{n}=A_{n-1}+2n+1$$ where $$A_1=1$$

Now, if we write the recurrence as:

$$A_{n}-A_{n-1}=2n+1$$

we can see that the difference between two successive terms is a linear function in $n$ and so we know the closed form will be quadratic. Let's take the time to look at a method called symbolic differencing to show that this must be true. Let's begin with the given recurrence:

$$A_{n}=A_{n-1}+2n+1$$

We may now increase $n$ by one to write the recurrence equivalently as:

$$A_{n+1}=A_{n}+2(n+1)+1$$

Subtracting the former from the latter, we obtain:

$$A_{n+1}=2A_{n}-A_{n-1}+2$$

$$A_{n+2}=2A_{n+1}-A_{n}+2$$

Subtracting the former from the latter, we obtain:

$$A_{n+2}=3A_{n+1}-3A_{n}+A_{n-1}$$

We now have a homogeneous recurrence, whose associated characteristic equation is:

$$r^3-3r^2+3r-1=(r-1)^3=0$$

Because the characteristic roots are $r=1$ of multiplicity 3, we know the closed form is:

$$A_n=k_1+k_2n+k_3n^2$$

where the parameters $k_i$ may be determined by initial values.

We are given:

$$A_1=1$$

and so using the original inhomogeneous recurrence, we may compute the next two terms:

$$A_2=1+2(2)+1=6$$

$$A_3=6+2(3)+1=13$$

Now we have enough values to determine the parameters. We obtain the following 3X3 system:

$$A_1=k_1+k_2\cdot1+k_3\cdot1^2=k_1+k_2+k_3=1$$

$$A_2=k_1+k_2\cdot2+k_3\cdot2^2=k_1+2k_2+4k_3=6$$

$$A_3=k_1+k_2\cdot3+k_3\cdot3^2=k_1+3k_2+9k_3=13$$

Solving this system, we find:

$$k_1=-2,\,k_2=2,\,k_3=1$$

and so the closed form for the recurrence is:

$$A_n=-2+2n+n^2=n^2+2n-2$$

To Stephen and any other guests viewing this topic, I invite and encourage you to post other recurrence or difference equation questions in our http://www.mathhelpboards.com/f15/ forum.

Best Regards,

Mark.
 

Similar threads

Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K