MHB Stephen's question at Yahoo Answers regarding an inhomogeneous linear recurrence

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear Recurrence
Click For Summary
The discussion addresses Stephen's question about finding the closed form of the recurrence relation A_n = A_{n-1} + 2n + 1 with A_1 = 1. The analysis shows that the closed form will be quadratic due to the linear difference between successive terms. By applying symbolic differencing and solving a system of equations derived from initial values, the parameters are determined as k_1 = -2, k_2 = 2, and k_3 = 1. Consequently, the closed form is established as A_n = n^2 + 2n - 2. The conversation encourages further inquiries into recurrence relations in a dedicated math forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find The Closed Form?

A1 = 1
an-1 + 2n+1
I know how to get the sequence but I don't know how to write the closed form.

Here is a link to the question:

Find The Closed Form? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Stephen,

We are given the recurrence:

$$A_{n}=A_{n-1}+2n+1$$ where $$A_1=1$$

Now, if we write the recurrence as:

$$A_{n}-A_{n-1}=2n+1$$

we can see that the difference between two successive terms is a linear function in $n$ and so we know the closed form will be quadratic. Let's take the time to look at a method called symbolic differencing to show that this must be true. Let's begin with the given recurrence:

$$A_{n}=A_{n-1}+2n+1$$

We may now increase $n$ by one to write the recurrence equivalently as:

$$A_{n+1}=A_{n}+2(n+1)+1$$

Subtracting the former from the latter, we obtain:

$$A_{n+1}=2A_{n}-A_{n-1}+2$$

$$A_{n+2}=2A_{n+1}-A_{n}+2$$

Subtracting the former from the latter, we obtain:

$$A_{n+2}=3A_{n+1}-3A_{n}+A_{n-1}$$

We now have a homogeneous recurrence, whose associated characteristic equation is:

$$r^3-3r^2+3r-1=(r-1)^3=0$$

Because the characteristic roots are $r=1$ of multiplicity 3, we know the closed form is:

$$A_n=k_1+k_2n+k_3n^2$$

where the parameters $k_i$ may be determined by initial values.

We are given:

$$A_1=1$$

and so using the original inhomogeneous recurrence, we may compute the next two terms:

$$A_2=1+2(2)+1=6$$

$$A_3=6+2(3)+1=13$$

Now we have enough values to determine the parameters. We obtain the following 3X3 system:

$$A_1=k_1+k_2\cdot1+k_3\cdot1^2=k_1+k_2+k_3=1$$

$$A_2=k_1+k_2\cdot2+k_3\cdot2^2=k_1+2k_2+4k_3=6$$

$$A_3=k_1+k_2\cdot3+k_3\cdot3^2=k_1+3k_2+9k_3=13$$

Solving this system, we find:

$$k_1=-2,\,k_2=2,\,k_3=1$$

and so the closed form for the recurrence is:

$$A_n=-2+2n+n^2=n^2+2n-2$$

To Stephen and any other guests viewing this topic, I invite and encourage you to post other recurrence or difference equation questions in our http://www.mathhelpboards.com/f15/ forum.

Best Regards,

Mark.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K