Stern Gerlach term in the Pauli Equation

Mantella
Messages
10
Reaction score
0
Where does the Stern Gerlach term in the Pauli equation come from? Taken from http://en.wikipedia.org/wiki/Pauli_equation. Following wikipedia's steps the Stern Gerlach term pops out when you apply the Pauli vector identity. I don't understand this step. It seems as if there should be no Stern Gerlach term.

Here are my steps starting with the Pauli vector identity,
(\boldsymbol{\sigma} \cdot \boldsymbol{a})(\boldsymbol{\sigma} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{b} + i\boldsymbol{\sigma} \cdot (\boldsymbol{a} \times \boldsymbol{b})

(\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A}))^2 = (\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A}))(\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A})) = (\boldsymbol{p} - e\boldsymbol{A})^2 + i\boldsymbol{\sigma} \cdot ((\boldsymbol{p} - e\boldsymbol{A}) \times (\boldsymbol{p} - e\boldsymbol{A}))

Shouldn't

\boldsymbol{v} \times \boldsymbol{v} = \boldsymbol{0}

and

(\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A}))^2 = (\boldsymbol{p} - e\boldsymbol{A})^2

I did it out in individual components as well, and came to the same conclusion. What am I missing?
 
Physics news on Phys.org
You almost get zero, but you end up with one term because momentum does not commute with the vector potential in general.

<br /> i\boldsymbol{\sigma} \cdot ((\boldsymbol{p} - e\boldsymbol{A}) \times (\boldsymbol{p} - e\boldsymbol{A})) = -\hbar e \epsilon_{jkl}\sigma_j \partial_k A_l = - e \hbar \mathbf{\sigma} \cdot \mathbf{B}<br />

I used p = -i hbar ∇. If you look back over your work when you did the calculation by components, you'll probably find the step where you moved the momentum operator past the vector potential.
 
Note that unlike in conventional vector algebra, in this algebra of vector operators
##\mathbf{p}\times \mathbf{A} + \mathbf{A} \times \mathbf{p} \neq 0 ##

$$[\mathbf{A} \times \mathbf{p}]_i = \sum_{jk} \epsilon_{ijk}A_jp_k = \sum_{jk} \epsilon_{ijk}p_kA_j - [p_k, A_j] = \sum_{jk} \epsilon_{ijk}p_kA_j +i\hbar \frac{\partial A_j}{\partial x_k} $$ $$\mathbf{p}\times \mathbf{A} + \mathbf{A} \times \mathbf{p}= i\hbar \nabla \times \mathbf{A} $$

An important takeaway from this is that identities from vector calculus will not always be true for vector operators.

Edit: Have I made a sign error?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top