Stirlings approx/CoinFlips/Gamma function

  • Thread starter Thread starter thatguy14
  • Start date Start date
  • Tags Tags
    Function
thatguy14
Messages
45
Reaction score
0

Homework Statement


Hi I actually have three questions that I am posting here, help in all of them would be greatly appreciated!

1) Prove that ln(n!) ≈ nln(n)-n+ln(2*pi*n)/2 for large n

2)Supposed you flip 1000 coins, what is the probability of getting exactly 500 heads

3) Show that n! = \int x^{n}exp(-x)dx where n is an integrer and the injtegral is from 0 to infinity. (The gamma function extends this definition of factorial to include non-integrers, z).

Homework Equations



Below

The Attempt at a Solution



1) I am pretty lost here. This is a third year thermodynamics course (not been heavily math based so far) so the solution shouldn't be something above that level. I don't even know where to start.

2) This one I thought would be really easy (and it should be). This is what I did.

I started off by ignoring the last term of stirlings approximation (this is what the textbook has and my prof did). the probability is

P_{N}(n) = \frac{N!}{(N-n)!n!}*2^{-N}
by using stirlings approximation, (first taking the natural log of both sides) and simplifying I got (and my professor)

P = exp(NlnN - (N-n)ln(N-n)-nln(n)-Nln(2))

but when I plug in 1000 for N and 500 for n I keep getting 1 which I don't think is right. What am I doing wrong?

3)I tried to do an integration by parts on the right side but it leads to some undefined things (i.e. 0*infinity) so I am lost yet again. I thought that was just a definition, how do I show that?

Thanks
 
Physics news on Phys.org
Please ignore number two, it required that the terms left off to be added. Still need help with 1 and 3
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top