operationsres
- 99
- 0
Why does:
\int_0^t d(e^{-us} X(s)) = \sigma \int_0^t e^{-us} dB(s)
for stochastic process X(t) and Wiener process B(t)?
Also, why is the following true:
\int_0^t d(e^{-us} X(s)) = e^{-ut}X(t) - X(0)
\int_0^t d(e^{-us} X(s)) = \sigma \int_0^t e^{-us} dB(s)
for stochastic process X(t) and Wiener process B(t)?
Also, why is the following true:
\int_0^t d(e^{-us} X(s)) = e^{-ut}X(t) - X(0)