I'm trying to solve this problem:(adsbygoogle = window.adsbygoogle || []).push({});

Compute [tex]\oint_c(y+z)dx + (z-x)dy + (x-y)dz [/tex] using Stoke's theorem, where c is the ellipse [tex]x(t) = asin^2t, \ y(t) = 2asintcost, z(t) = acos^2t, 0\leq t \leq \pi [/tex]

The version of stoke's theorem I learned is:

[tex]

\int_c \overrightarrow{F} \cdot d\overrightarrow{r}

= \int_s curl \overrightarrow{F} \cdot d\overrightarrow{S}

=\iint_s curl \overrightarrow{F}\cdot \overrightarrow{n} \cdot dS

[/tex]

where S is the elliptical surface bounded by the curve c, F is a vector field and n is the unit vector pointing out at that point.

In this case, [tex]F = <y+z, z-x, x-y>[/tex], and I calculated curl F to be [tex]<-2, 0, -2>[/tex].

So we have to find

[tex]\iint_s <-2, 0, -2> \cdot \overrightarrow{n} \cdot dS [/tex]

How would I find [tex]\overrightarrow {n} [/tex] and dS, and also the bounds of integration for the double integral?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stokes theorem

Loading...

Similar Threads for Stokes theorem | Date |
---|---|

I What do Stokes' and Green's theorems represent? | Mar 23, 2018 |

I Proofs of Stokes Theorem without Differential Forms | Jan 24, 2017 |

I Why is Stoke's theorem of a closed path equal to zero? | Sep 26, 2016 |

B Breaking Stokes theorem | Jun 10, 2016 |

**Physics Forums - The Fusion of Science and Community**