MHB Stuart's question at Yahoo Answers regarding average value of a function

AI Thread Summary
The average value of the function f(x) = cos^10(x)sin(x) on the interval [0, π] is calculated using the formula A = (1/(b-a))∫_a^b f(x)dx. By substituting a = 0, b = π, and applying u-substitution with u = cos(x), the integral simplifies to A = (2/π)∫_0^1 u^10 du. Evaluating the definite integral gives A = (2/(11π))(1 - 0) = 2/(11π). Thus, the average value of the function on the specified interval is 2/(11π).
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)?

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)

f(x)=(cos^10 (x))(sin (x))

Here is a link to the question:

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Stuart,

We are given the following theorem:

Let $f$ be continuous on $[a,b]$. The average value of $f$ on the interval is the number:

$\displaystyle A=\frac{1}{b-a}\int_a^b f(x)\,dx$

So, we identify that for our problem, we have:

$a=0,\,b=\pi,\,f(x)=\cos^{10}(x)\sin(x)$

and so we have:

$\displaystyle A=\frac{1}{\pi-0}\int_0^{\pi} \cos^{10}(x)\sin(x)\,dx$

Now, to evaluate the definite integral, we may choose the $u$-substitution:

$u=\cos(x)\,\therefore\,du=-\sin(x)\,dx$

and we now have:

$\displaystyle A=\frac{2}{\pi}\int_{0}^{1} u^{10}\,du$

Notes:
  • I changed the limits in accordance with the substitution
  • I used the rule $\displaystyle -\int_a^b f(x)\,dx=\int_b^a f(x)\,dx$
  • I used the even function rule, i.e, given an even integrand we may write $\displaystyle \int_{-a}^a f(x)\,dx=2\int_0^a f(x)\,dx$.

Now, we may find the average value:

$\displaystyle A=\frac{2}{11\pi}\left[u^{11} \right]_0^1=\frac{2}{11\pi}\left(1^{11}-0^{11} \right)=\frac{2}{11\pi}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
9
Views
4K
Replies
10
Views
2K
Replies
1
Views
12K
Replies
7
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
Replies
8
Views
3K
Back
Top