MHB Solve Circle Radius Given Trapezoid Height & Length

AI Thread Summary
Determining the radius of a circle given the height and length of a trapezoid is complex and requires additional information. The discussion highlights the use of right-angled triangles and Pythagorean theorem to derive equations relating the radius and lengths. By manipulating these equations, a quadratic formula for the radius can be established in terms of the trapezoid's dimensions. The configuration can be clarified if a horizontal line is tangential to the circle, which helps in solving for the unknowns. The participants express gratitude for the assistance and encouragement in tackling the problem.
Jeppe1
Messages
2
Reaction score
0
I don't know if this can be calculated.
I have tried for hours and days to isolate/calculate the radius and angles of the circle in order to be able to calculate length 1. I have tried using cos/sin-relation formulas and triangle formas - but Iam stuck. Any hints would be greatly appreciated. The task is one i have put on my self for cutting out a wooden plate. I have made the cut - but by approximation :-)

View attachment 3333
 

Attachments

  • Can this be calculated.JPG
    Can this be calculated.JPG
    28.1 KB · Views: 116
Mathematics news on Phys.org
Hi Jeppe,

Unfortunately, without more information, the four unknowns cannot be determined.
 
Draw horizontal lines through the points where the lines $h_1$ and $h_2$ meet the circle. That will give you a pair of right-angled triangles. You can then use Pythagoras to get the equations $$(r-h_1)^2 + l_1^2 = r^2,$$ $$(r-h_2)^2 + (l_1+l_2)^2 = r^2.$$ After a bit of algebra (expanding those brackets), the equations reduce to $$h_1^2 - 2rh_1 + l_1^2 = 0,\qquad (*)$$ $$h_2^2 - 2rh_2 + l_1^2 + 2l_1l_2 + l_2^2.$$ Subtract the first of those equations from the second: $$h_2^2 - h_1^2 - 2r(h_2 - h_1) + 2l_1l_2 + l_2^2 = 0.$$ Solve that for $l_1$: $$l_1 = \frac{(h_2 - h_1)(2r - h_1 - h_2) - l_2^2}{2l_2}.$$ Substitute that expression for $l_1$ into the equation labelled (*) and you will have a quadratic equation (admittedly quite a messy one) for $r$ in terms of $h_1$, $h_2$ and $l_2$.

Edit (@Euge): I am assuming that the horizontal blue line is meant to be tangential to the circle. That should determine the configuration, shouldn't it?
 
Opalg said:
Edit (@Euge): I am assuming that the horizontal blue line is meant to be tangential to the circle. That should determine the configuration, shouldn't it?

Yes, in that case it does. We would then have $\tan \phi_1 = \frac{\ell_1}{r-h_1}$ and $\tan (\phi_1 + \phi_2) = \frac{\ell_1 + \ell_2}{r-h_2}$, so then

$$\tan \phi_2 = \frac{\tan (\phi_1 + \phi_2) - \tan \phi_1}{1 + \tan (\phi_1 + \phi_2) \tan \phi_1} = \frac{(r - h_2)\ell_1 - (r - h_1)(\ell_1 + \ell_2)}{(r - h_1)(r - h_2) + \ell_1(\ell_1 + \ell_2)}.$$

Since $r$ and $\ell_1$ have been determined, it now follows that the entire configuration is determined.
 
Wow - that was fast ! - I will get working on the quadratic!
Thanks and thanks again! - best forum and page ever :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top