Stuck on complex pipe system bending moment hand calcs

AI Thread Summary
The discussion centers on calculating bending moments and potential failure areas in a complex pipe system with a long horizontal pipe (L1 at 100ft) and a vertical pipe (L2 at 30ft). The pipes are schedule 40 with a diameter of 1/2" and a moment of inertia of approximately 10^-8, with each component weighing about 2kg. Concerns include the need for structural support to prevent buckling and ensure rigidity, especially under high wind conditions, as the initial vertical section lacks additional support. The pressure in the system is low (around 40 psi), allowing for some simplifications in calculations. The user seeks guidance on assessing bending moments at fittings and overall system stability.
rylest
Messages
2
Reaction score
0
TL;DR Summary
Not sure how to tackle this indeterminate pipe problem. I'm interested in any of the failures (maybe bending moment at the fitting or buckling at the long lines).
pipeproblem.jpg


Some more details on the system are that L1 is very long (close to 100ft) and L2 is close to 30ft (the vertical pipes). The piping is all schedule 40 1/2" OD. Moment of inertia is roughly 10^-8. Components are about 2kg each. The distance of the pipes horizontally is small (around 2ft). Pressure is low and it's a gas so I think we can ignore that (40ish psi). Want to see how I can calc what the possible failure areas are. Stuff like bending moment at the fittings and buckling at the long vertical pipes. Thanks!
 

Attachments

  • 1643298394585.png
    1643298394585.png
    9.3 KB · Views: 150
Engineering news on Phys.org
Welcome!

Would you mind reviewing your description against the diagram?
If L1 is 100 feet, L2 should not be 30 feet.
It seems that you will need a structure for rigidity of those pipes in high wind conditions.
 
Of course! Seems like the 100ft line has some clamps on it higher up but at least for the initial 30ft there is no other structure. It seems to be fine? The two L1 pipes already exist I'm looking at adding the L2 pipe and tieing in.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...

Similar threads

Replies
23
Views
37K
Replies
3
Views
3K
Back
Top