Sub-quotients and Gaussian Integer rings

Feryll
Messages
7
Reaction score
0
This has to do with number theory along with group and set theory, but the main focus of the proof is number theory, so forgive me if I'm in the wrong place. I've been struggling to understand a piece of a proof put forth in my book. I know what the Gaussian integers are exactly, and what a subquotient group and isomorphism is (although probably not perfectly, right?), but I don't know what pZ is exactly.

p is a prime.

"We know that p is reducible [ie p=(a+bi)(a-bi), a,b∈Z] iff (p)=pZ is not prime.
Consider the isomorphisms
Z≅Z[X]/(X2+1)
Z/(p)≅Z[X]/(X2+1,p)
Z/(p)≅(Z[X]/(p))/(X2+1)
Z/(p)≅Fp[X]/(X2+1)


If p≠2, we have
(p) reducible⇔X2+1 factors in Fp[X]
⇔-1∈(Fp*)2, the group of squares in Fp*
⇔p congruent to 1 mod(4) (Euler's criterion)​
"I just barely know where to start with what he's getting at. What is (p), exactly? What is Z[X] and Fp[X]?
 
Physics news on Phys.org
(p) is the ideal generated by p in Z.

Z[X] and F_p[X] are the rings of polynomials in the indeterminate X with coefficients in the rings Z and F_p, resp.

What your book is doing is showing that just because p is a prime in Z (so the ideal generated by p in Z is a prime ideal), it doesn't follow that the ideal generated by p is prime in Z. The book is (essentially) trying to determine when this is the case, which is precisely when the quotient Z/(p) is a domain.

P.S. You probably don't mean to say "subquotient" here; "quotient" will do just fine.
 
morphism said:
(p) is the ideal generated by p in Z.

Z[X] and F_p[X] are the rings of polynomials in the indeterminate X with coefficients in the rings Z and F_p, resp.

What your book is doing is showing that just because p is a prime in Z (so the ideal generated by p in Z is a prime ideal), it doesn't follow that the ideal generated by p is prime in Z. The book is (essentially) trying to determine when this is the case, which is precisely when the quotient Z/(p) is a domain.

P.S. You probably don't mean to say "subquotient" here; "quotient" will do just fine.

Thanks, you really cleared up some concepts, then. Also, yes, I must have meant quotient. Not sure where the sub came from.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top