Philosophaie
- 456
- 0
I want to substitute ds by dt in the Frenet-Serret Formulas where κ is the curvature and is the torsion:
Tangential:\frac{d\vec{T}}{ds} = κ*\vec{N}
Normal:\frac{d\vec{N}}{ds} = -κ*\vec{T}+τ*\vec{B}
Binormal:\frac{d\vec{B}}{ds} =- τ*\vec{N}
I want to substitute \frac{d\vec{T}}{ds} → \frac{d}{dt} T(t) N(t), B(t) and solve for κ and τ.
Tangential:\frac{d\vec{T}}{ds} = κ*\vec{N}
Normal:\frac{d\vec{N}}{ds} = -κ*\vec{T}+τ*\vec{B}
Binormal:\frac{d\vec{B}}{ds} =- τ*\vec{N}
I want to substitute \frac{d\vec{T}}{ds} → \frac{d}{dt} T(t) N(t), B(t) and solve for κ and τ.
Last edited: