Substitution differential equation problem

Michels10
Messages
18
Reaction score
0
Solve y' = y/x + 1/y


I get a similar answer to the correct one but I believe I am making a substitution error. Here is my attempt:




dy/dx = y/x + 1/y

set v = y/x

equation now becomes: v + x(dv/dx) = v + 1/(x*v)

reduces to: dv/dx = 1/(x^2 * v)

Now the equation is seperable, so I separate and take the integral of both sides yielding:

v = (sqrt(-2) * sqrt(x*c - 1))/sqrt(x)

--even if i substitute v = y/x back in it doesn't come out to be the correct solution of:

y = sqrt(x) * sqrt(x*c -2)



Any insight would be great!
 
Physics news on Phys.org
Nevermind, solved it. Needed to substitute v=y^2.

Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top