DreamWeaver
- 297
- 0
By considering the product of complex numbers:
$$z = (2+i)(3+i)$$
Show that
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
$$z = (2+i)(3+i)$$
Show that
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$