odolwa99
- 85
- 0
Homework Statement
Q. Find the range of values of x for which the sum to infinity exists for each of these series:
(i) 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + ...
(ii) \frac{1}{3} + \frac{2x}{9} + \frac{4x^2}{27} + \frac{8x^3}{81} + ...
Homework Equations
S\infty = \frac{a}{1 - r}
The Attempt at a Solution
(i) r = \frac{1}{x}/ 1 = \frac{1}{x} \Rightarrow 1 = x
Ans.: From textbook: IxI > 1
(ii) r = \frac{2x}{9}/ \frac{1}{3} = \frac{6x}{9} \Rightarrow 6x = 9 \Rightarrow x = \frac{9}{6} \Rightarrow x = \frac{3}{2}
Ans.: From textbook: -\frac{3}{2} < x < \frac{3}{2}
I'm confused as to whether I'm approaching this correctly, or if I've simply gone wrong in expressing the answers I found. Can someone help me figure this out? Thanks.