Somefantastik
- 226
- 0
Homework Statement
find the sum for
\sum_{k=1}^{\infty} kx^{k}
Homework Equations
\sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}; -1 < x < 1
The Attempt at a Solution
\sum_{k=1}^{\infty} kx^{k} = \sum_{n=0}^{\infty}(n+1)x^{n+1} = x\sum_{n=0}^{\infty} (n+1)x^{n} = x \frac{d}{dx} \sum_{n=0}^{\infty}x^{n+1}
I'm not sure how to proceed; thoughts?