Summation problem please help

  • Thread starter Suk-Sci
  • Start date
  • #1
44
0

Main Question or Discussion Point

prove that: [tex]\sum_{m=0}^{q} (n-m) \frac{(p-m)!}{m!} = \frac{(p+q+1)!}{q!} (\frac{n}{p+1} - \frac{q}{p+2} )[/tex] using induction
 
Last edited:

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,833
955


The "base case", of course, is q= 0:
[tex]\sum_{m=0}^{0} (n-m) \frac{(p-m)!}{m!}= (n-0)\frac{p- 0}{0!}= mp= \frac{(p+ 1)!}{0!}\left(\frac{n}{p+1}\right)[/tex]

Now, assume that
[tex]\sum_{m=0}^{k} (n-m) \frac{(p-m)!}{m!} = \frac{(p+k+1)!}{k!} (\frac{n}{p+1} - \frac{k}{p+2} )[/tex]

Then
[tex]\sum_{m=0}^{k+1} (n-m) \frac{(p-m)!}{m!}= \frac{(p+k+1)!}{k!} (\frac{n}{p+1} - \frac{k}{p+2} )+ (m-k-1)\frac{(p- k- 1)!}{(k+1)!}[/tex]

so you need to show that
[tex] \frac{(p+k+1)!}{k!} (\frac{n}{p+1} - \frac{k}{p+2} )+ (m-k-1)\frac{(p- k- 1)!}{(k+1)!}= \frac{(p+ k+ 2)!}{(k+1)!}\left(\frac{n}{p+1}- \frac{k+1}{p+2}\right)[/tex]
 
  • #3
44
0


Thank You......now i have got it ...........i made a mistake in m=k+1
 

Related Threads on Summation problem please help

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
10
Views
11K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
4
Views
4K
  • Last Post
Replies
1
Views
1K
Top