Superposition of states and orthonormalization

tarletontexan
Messages
29
Reaction score
0

Homework Statement



Consider a particle in a superposition of states given at time t=0 by Y(x,0)=C(y1(x)+y2(x)), where y1(x) and y2(x) are the stationary states with energies E1 and E2 respectively. if y1(x) and y2(x) are orthonormalized, what value of C is required to normalize Y(x,0)?

Homework Equations





The Attempt at a Solution


the orthonormalization is messing with my head, there is an example of normalizing wavefunctions in my book but this looks nothing like it. I am not sure of how to approach this problem.
 
Physics news on Phys.org
What equation expresses the requirement that Y(x,0) is normalized?
 
that is not given, the only thing it asks for in this part of the problem is what value of C is required to normalize Y(x,0)...
 
I realize it is not given in the problem statement. It should be given in your lecture notes or textbook. What does it mean, for a wavefunction to be normalized? Use the definition of "normalized", and apply it to this problem.
 
ok, i see, but the example in the book has the initial wavefunction given as Y(x,0)=Cexp(-|x|/x0) where C and x0 are constants, is it possible to get this function into a similar format??
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top