# Swinging Pendulum hits Block on Table- Find Distance and Acceleration?

## Homework Statement

A 1.00 kg pendulum hanging from a length 1.50 m starts horizontal to the ceiling and swings (until it's perpendicular to the ceiling) to hit a 4.00 kg block. The coefficient of friction is .30.
a) What distance does the block travel?
b) Assuming there is no friction, what would be the acceleration of the block?
So given:
m_p=1.00 kg
l=1.50 m
m_b=4.00 kg
μ = .30

PE = mgh
KE = 1/2 mv^2
F=ma

## The Attempt at a Solution

A) So I can find the final velocity of the pendulum by setting PE=KE and solving for v, and then solving for a using the third equation listed. But first, what would I use for d in that 3rd equation, since the pendulum's path is circular?
Next, once I have a, I was simply going to give the block that value of a to start with, and use F= ma_1 = ma_2 - f and solve for a_1 which would be the actual acceleration of the block taking into account frictoin, and then just use that to find the distance.
Is this process correct, and how do I find the distance traveled by the pendulum?

B) Wouldn't this just be the acceleration of the pendulum, since no friction is slowing it down?