MHB Synthetic Division P(x)|2+3i= 0

  • Thread starter Thread starter shorty888
  • Start date Start date
  • Tags Tags
    Division
shorty888
Messages
6
Reaction score
0
P(x)= x^4-4x^3+10x^2+12x-39, using synthetic division given 2+3i is a zero of function
 
Mathematics news on Phys.org
shorty888 said:
P(x)= x^4-4x^3+10x^2+12x-39, using synthetic division given 2+3i is a zero of function

Exactly what do you want to do, what you have posted is not a question. Please post the question as asked.

CB
 
shorty888 said:
P(x)= x^4-4x^3+10x^2+12x-39, using synthetic division given 2+3i is a zero of function
If a polynomial with real coefficients has a complex zero, then the complex conjugate of that number is also a zero. Thus 2+3i and 2-3i are both zeros. By the factor theorem, $x-(2+3i)$ and $x-(2-3i)$ are both factors of $P(x)$. Hence so is their product $\bigl(x-(2+3i)\bigr)\bigl(x-(2-3i)\bigr)$. Work out that product (which is a real quadratic polynomial), then use synthetic division to divide $P(x)$ by that quadratic. The quotient will be another quadratic, which you can solve to get the other two zeros of $P(x)$.
 
My understanding of synthetic division is that it is used to divide by "x- a" for a constant a, not a quadratic. Of course, it is true that
(x-(2-3i))(x+(2- 3i))= ((x- 2)- 3i)((x-2)+ 3i)= (x-2)^2- (3i)^2= x^2- 4x+ 4+ 9= x^2- 4x+ 13 divides into x^4- 4x^3+ 10x^2+ 12x- 39 without remainder but synthetic division by x- (2+ 3i) is2+3i|1_____-4_______10_________12_______-39
__________2+3i_____-13_______-6+9i_______+39
____1____-2+3i______-3________6+9i________0

or x^3+ (-2+3i)x^2- 3x+ (6+ 9i)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top