System, potential energy, and nonconservative forces: The whole story

Click For Summary
SUMMARY

The discussion centers on the relationship between potential energy, nonconservative forces, and mechanical systems. It establishes that potential energy is an intrinsic property of the system, defined by both external conservative forces, represented as ##\mathbf{F}_a##, and internal conservative forces, denoted as ##\mathbf{G}_{ab}##. The overall potential function of a system is the sum of external and internal potential functions, ##U = \Phi + \Psi##. The conversation also clarifies that external forces can be conservative if they derive from background potentials, although this assumption may not hold if the system significantly influences the source of these potentials.

PREREQUISITES
  • Understanding of mechanical systems and forces
  • Familiarity with potential energy concepts
  • Knowledge of conservative and nonconservative forces
  • Basic grasp of calculus, particularly integrals and derivatives
NEXT STEPS
  • Study the principles of conservative and nonconservative forces in physics
  • Explore the derivation and application of potential energy functions in mechanical systems
  • Learn about the implications of background potentials on system dynamics
  • Investigate the role of external forces in energy conservation laws
USEFUL FOR

This discussion is beneficial for physics students, educators, and researchers focusing on mechanics, energy systems, and the interplay between forces in physical systems.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]

fog37 said:
However, I think that potential energy can only be the energy of the SYSTEM and not between the system and something else.
This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}## (indices enumerate particles). If the external forces are conservative, ##\mathbf{F}_a = - \nabla \phi_a##, then\begin{align*}
\sum_a \int_1^2 \mathbf{F}_a \cdot \mathbf{v}_a dt = \sum_a (\phi_a(1) - \phi_a(2)) = \Phi(1) - \Phi(2)
\end{align*}and ##\Phi \equiv \displaystyle{\sum_a} \phi_a## is the external potential function. If the internal forces are conservative, that is, if ##\mathbf{G}_{ab} = g_{ab}(r_{ab}) \hat{\mathbf{r}}_{ab}## where ##\mathbf{r}_{ab} = \mathbf{r}_a - \mathbf{r}_b## and the function ##g_{ab}(r_{ab})## depends only on the inter-particle separation, then using ##\mathbf{G}_{ab} + \mathbf{G}_{ba} = \mathbf{0}## you have\begin{align*}
\sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt &=\sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot \mathbf{v}_a + \mathbf{G}_{ba} \cdot \mathbf{v}_b)dt \\
&= \sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \cdot \mathbf{v}_b) )dt
\end{align*}Work on the term \begin{align*}
\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \mathbf{v}_b) &= \dfrac{g_{ab}(r_{ab})}{r_{ab}} \mathbf{r}_{ab} \cdot \dfrac{d\mathbf{r}_{ab}}{dt} \\
&=\dfrac{1}{2} \dfrac{g_{ab}(r_{ab})}{r_{ab}} \dfrac{d}{dt}(r_{ab}^2) \\
&= g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt}
\end{align*}Then the integral becomes\begin{align*}
\sum_a \sum_{b>a} \int_1^2 g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt} dt &= \sum_a \int_1^2 g_{ab}(r_{ab}) dr_{ab} \\
&= \sum_a \sum_{b>a} [\psi_{ab}(r_{ab}(1)) - \psi_{ab}(r_{ab}(2)) ] \\
&= \Psi(1) - \Psi(2)
\end{align*}where the function ##\psi_{ab}## is such that ##g_{ab} = -\dfrac{d\psi_{ab}}{dr_{ab}}##, and where ##\Psi## is the internal potential function. The sum ##U = \Phi + \Psi## is then the overall potential function of the system, taking into account both the external and internal conservative specified forces.

If you have some non-conservative specified forces ##\mathbf{H}_a##, then\begin{align*}
\sum_a \int_1^2 (\mathbf{F}_a + \mathbf{H}_a) \cdot \mathbf{v}_a dt + \sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt&= \sum_a \int_1^2 m_a\ddot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a dt \\
&= \sum_a \int_1^2 m_a \dfrac{1}{2} \dfrac{d}{dt} (v_a^2) dt \\
&= \sum_a \dfrac{1}{2}m_a(v_a(2)^2 - v_a(1)^2)
\end{align*}so that\begin{align*}-\Delta(\Phi + \Psi) + \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta T \\
\implies \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta (\Phi + \Psi + T) = \Delta E
\end{align*}Here ##\displaystyle{\sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt}## is the work done by any other non-conservative specified forces on the system.
 
Last edited by a moderator:
  • Like
Likes   Reactions: fog37, weirdoguy and Dale
Physics news on Phys.org
ergospherical said:
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}##

<< Rest of quote snipped by the Mentors for brevity>>
Hello ergospherical.

Thanks for this post. A little over my head. So, I guess I am incorrect to think that a force that is external (not internal to the system) cannot be conservative. For example, if the system is an object and planet Earth is not included inside the system, we can still define the potential energy between the system and planet Earth even if Earth is outside of the system...

Thank you!
 
Last edited by a moderator:
In a restricted sense. The assumption is that the external forces are derived from background potentials which depend only on time and not on the co-ordinates of the particles in your chosen system.

If the system is "large" enough to have an influence on the source of the background potential, then this approximation no longer holds and you can no longer consider the system & source to be independent of each other.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
15
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K