I System, potential energy, and nonconservative forces: The whole story

AI Thread Summary
Potential energy is defined as the energy of a system, focusing on internal and external forces. External forces can be conservative, allowing for potential energy calculations even when the source, like Earth, is outside the system. However, if the system is large enough to influence the source of the background potential, this assumption breaks down. The overall potential function of a system combines both external and internal conservative forces. Understanding these dynamics is crucial for accurately describing mechanical systems.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]

fog37 said:
However, I think that potential energy can only be the energy of the SYSTEM and not between the system and something else.
This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}## (indices enumerate particles). If the external forces are conservative, ##\mathbf{F}_a = - \nabla \phi_a##, then\begin{align*}
\sum_a \int_1^2 \mathbf{F}_a \cdot \mathbf{v}_a dt = \sum_a (\phi_a(1) - \phi_a(2)) = \Phi(1) - \Phi(2)
\end{align*}and ##\Phi \equiv \displaystyle{\sum_a} \phi_a## is the external potential function. If the internal forces are conservative, that is, if ##\mathbf{G}_{ab} = g_{ab}(r_{ab}) \hat{\mathbf{r}}_{ab}## where ##\mathbf{r}_{ab} = \mathbf{r}_a - \mathbf{r}_b## and the function ##g_{ab}(r_{ab})## depends only on the inter-particle separation, then using ##\mathbf{G}_{ab} + \mathbf{G}_{ba} = \mathbf{0}## you have\begin{align*}
\sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt &=\sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot \mathbf{v}_a + \mathbf{G}_{ba} \cdot \mathbf{v}_b)dt \\
&= \sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \cdot \mathbf{v}_b) )dt
\end{align*}Work on the term \begin{align*}
\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \mathbf{v}_b) &= \dfrac{g_{ab}(r_{ab})}{r_{ab}} \mathbf{r}_{ab} \cdot \dfrac{d\mathbf{r}_{ab}}{dt} \\
&=\dfrac{1}{2} \dfrac{g_{ab}(r_{ab})}{r_{ab}} \dfrac{d}{dt}(r_{ab}^2) \\
&= g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt}
\end{align*}Then the integral becomes\begin{align*}
\sum_a \sum_{b>a} \int_1^2 g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt} dt &= \sum_a \int_1^2 g_{ab}(r_{ab}) dr_{ab} \\
&= \sum_a \sum_{b>a} [\psi_{ab}(r_{ab}(1)) - \psi_{ab}(r_{ab}(2)) ] \\
&= \Psi(1) - \Psi(2)
\end{align*}where the function ##\psi_{ab}## is such that ##g_{ab} = -\dfrac{d\psi_{ab}}{dr_{ab}}##, and where ##\Psi## is the internal potential function. The sum ##U = \Phi + \Psi## is then the overall potential function of the system, taking into account both the external and internal conservative specified forces.

If you have some non-conservative specified forces ##\mathbf{H}_a##, then\begin{align*}
\sum_a \int_1^2 (\mathbf{F}_a + \mathbf{H}_a) \cdot \mathbf{v}_a dt + \sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt&= \sum_a \int_1^2 m_a\ddot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a dt \\
&= \sum_a \int_1^2 m_a \dfrac{1}{2} \dfrac{d}{dt} (v_a^2) dt \\
&= \sum_a \dfrac{1}{2}m_a(v_a(2)^2 - v_a(1)^2)
\end{align*}so that\begin{align*}-\Delta(\Phi + \Psi) + \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta T \\
\implies \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta (\Phi + \Psi + T) = \Delta E
\end{align*}Here ##\displaystyle{\sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt}## is the work done by any other non-conservative specified forces on the system.
 
Last edited by a moderator:
  • Like
Likes fog37, weirdoguy and Dale
Physics news on Phys.org
ergospherical said:
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}##

<< Rest of quote snipped by the Mentors for brevity>>
Hello ergospherical.

Thanks for this post. A little over my head. So, I guess I am incorrect to think that a force that is external (not internal to the system) cannot be conservative. For example, if the system is an object and planet Earth is not included inside the system, we can still define the potential energy between the system and planet Earth even if Earth is outside of the system...

Thank you!
 
Last edited by a moderator:
In a restricted sense. The assumption is that the external forces are derived from background potentials which depend only on time and not on the co-ordinates of the particles in your chosen system.

If the system is "large" enough to have an influence on the source of the background potential, then this approximation no longer holds and you can no longer consider the system & source to be independent of each other.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...

Similar threads

Back
Top