Taylor Series Converges to e^-x for All x

  • Thread starter Thread starter tnutty
  • Start date Start date
  • Tags Tags
    Series
tnutty
Messages
324
Reaction score
1
True/false The taylor series below converges for all x to e^-x

n-infinity
\sum (-1)^(n-1) * 1/n * x^n
n=1
 
Physics news on Phys.org
well the series for e^x is Sum: x^n/n!

I will assume you forgot to put the factorial in there. Cause then it is obviously falso

So now (-1x)^n/n!= (-1)^n x^n/n! = e^-x

So this is false, it converges to -e^-x

my notaion is very sloppy, but you get the picture
 
nope did not forgot the factorial. Why is it obviously false then.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top