Taylor series representation for $$ \frac{x}{(1+4x)^2}$$

The Subject
Messages
32
Reaction score
0

Homework Statement


Find a power series that represents $$ \frac{x}{(1+4x)^2}$$

Homework Equations


$$ \sum c_n (x-a)^n $$

The Attempt at a Solution


$$ \frac{x}{(1+4x)^2} = x* \frac{1}{(1+4x)^2} $$
since \frac{1}{1+4x}=\frac{d}{dx}\frac{1}{(1+4x)^2}
$$ x*\frac{d}{dx}\frac{1}{(1+4x)^2} =x\frac{d}{dx}\sum_{n=0}^\infty(-4)^nx^n=x\sum_{n=0}^\infty(-4)^nnx^{n-1}=\sum_{n=0}^\infty(-4)^nnx^{n}$$

The solution suggests $$\sum_{n=0}^\infty(-4)^n(n+1)x^{n+1}$$

Am i doing something incorrect?
 
Physics news on Phys.org
Reconsider your differentiation. Isn't ##\frac{d}{dx} x^{-2} = -2x^{-3}##?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top