Taylor Series for sin(x) Centered at π/2 with Infinite Radius of Convergence

nameVoid
Messages
238
Reaction score
0
f(x)=sinx
taylor series centered at pi/2

sum((-1)^n (x-pi/2)^(2n)/(2n)! , n=0,infty ) with radius of convergence infty
 
Physics news on Phys.org
\sum\limits_{n=0}^{\infty} \left(\frac{(-1)^n(x-\frac{\pi}{2})^{2n}}{(2n)!} \right) is correct
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top