Techniques for Optimizing Partitioning of Positive Real Numbers

  • Thread starter Thread starter nerdjock
  • Start date Start date
  • Tags Tags
    Sets
nerdjock
Messages
3
Reaction score
0
Hello,

I have a problem where I have a set of positive real numbers and must partition this set into two new sets such that:

1. The sum of the values in each set is as close as possible to the sum of the values in the other set. i.e. the difference is as close to zero as is possible.

2. A function f defined over the elements of each set is simultaneously minimized for both sets.

Essentially such that (Absolute value of difference of the sum in each set)+ (Sum of value of function in each set) is as small as possible. One condition may be more important than the other, so weights may be applied to both conditions to signify relative importance.

What techniques could I use for this? It would be great if someone could identify which branch of mathematics this falls under, as I would very much like to learn about it for myself, but am unable to determine were I should be looking.

Thanks very much in advance.
 
Mathematics news on Phys.org
You have two function ##f,g\, : \,S \longmapsto \mathbb{R}_+## and weights, which means a single function ##H\, : \,\lambda f + (1-\lambda)g## which you want to minimize. Depending on the amount of date, a brute force method could be successful. In case you can model your data by a continuous function, a Lagrange multiplier ansatz might work.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top