RedX said:
What is the benefit of expressing Maxwell's equation in the language of differential forms? Differential forms seem to be inferior to the language of tensors. Sure you can do fancy things with the exterior derivative and hodge star, but with tensors you can derive those same identities with contraction properties of the permutation tensor.
This is an excellent question and one which can be answered on several levels. For example, we can consider the question from the perspective of geometric content, notation, computation, and others.
The perspective I (perhaps some others, too) find most useful, is the geometric perspective. What I mean by this, in short, is that the objects that we use to describe physical systems are independent of the coordinate systems that we might use to describe them. For example, in 3-dimensional Euclidean space, a vector which points along a particular direction may be described in Cartesian (regular, rectilinear) coordinates, spherical coordinates, etc. The physical content of the vector is unaffected by the selection of a particular system.
So, to address the issue of the electromagnetic field equations -- Maxwell's equations -- we see in the differential-form version of these equations a geometric description of the field quantities which is
coordinate independent. And this, I think, isn't really just a "benefit." From the geometric perspective it's a prerequisite to have a meaningful physical theory.
The issue of notation -- this is a two-edged sword. For simplifying notation, which differential forms usually afford, can have the effect of making complicated ideas and/or their proofs more apparent. The other edge is that they can serve to obscure complexity and lead to confusion. Usually though, I think the risk of the latter is outweighed by the former.
Computation is another interesting and important point. Let's get something formal out of the way first: both tensors and differential forms are geometric constructions. Tensors are defined in a coordinate independent manner as multilinear maps from the products of vector spaces and its dual to (typically) the real numbers. "Forms" are simply the multilinear, alternating variety of these from products of the vector space to the reals and obey the exterior algebra. Differential forms are the generalization of forms to differentiable manifolds where the vector space (and its dual) is replaced by the tangent (and the cotangent) space. And in flat (Minkowski) space, the differential forms are just a particular type of tensor field defined on the four-dimensional spacetime.
Computations of a given physical observable always require a specific coordinate system. Whether one wishes to use the formalism of differential forms or not is really just a matter of preference. While Maxwell's equations are compact and elegant when expressed in terms of differential forms, I'm not aware of any specific calculations that are carried out very far in that formalism. Usually, one computes in terms of the electromagnetic field tensor F_{\mu\nu} in a given frame. In general relativity, however, the computation of the curvature tensor, in particular, is greatly simplified by "sticking with" differential forms for a long way into the calculation.