Test Series Convergence: 1! + 2! + ... + n! / (2n)!

  • Thread starter Thread starter dobry_den
  • Start date Start date
  • Tags Tags
    Convergent Series
dobry_den
Messages
113
Reaction score
0
Hi, could you please check if my solution is correct?

Homework Statement



Test the following series for convergence:

\sum_{n=1}^{\infty}\frac{1!+2!+...+n!}{(\left 2n \right)!}

The Attempt at a Solution



I can use a slightly altered series

\sum_{n=1}^{\infty}\frac{nn!}{(\left 2n \right)!}

whose every term is >= than the corresponding term in the original series.. and thus if this altered series converges, then the original one should so as well...

Then, if I use the limit ratio test for the second series:

\lim_{n \rightarrow \infty}\frac{(\left n+1\right)(\left n+1 \right)!}{(\left 2n+2 \right)!}\frac{(\left 2n\right)!}{n(\left n \right)!} = 0

This means that the altered series is convergent, and thus the original series is also convergent.

Is this reasoning correct? Thanks in advance!
 
Last edited:
Physics news on Phys.org
Yes it is.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top