The Attractive Power of the Inverse Square Potential: Do Examples Exist?

AI Thread Summary
The discussion focuses on the existence of attractive forces characterized by an inverse square potential, specifically V(r) ∼ -1/|r|^2 as r approaches zero. Participants explore examples, noting that the electrostatic force on a dipole approximates this potential, leading to an inverse cube force law. They highlight the multipole expansion in molecular physics, which provides various potentials, including -1/R^2 for ion-dipole interactions and -1/R^3 for dipole-dipole interactions. Clarifications are made regarding the nature of dipoles and their behavior in electric fields, emphasizing the significance of the dipole's orientation. The conversation ultimately seeks to deepen understanding of these potential forms in physics.
wrobel
Science Advisor
Insights Author
Messages
1,124
Reaction score
980
Do exist examples of attraction forces with such a type potential
##V(\boldsymbol r)\sim-\frac{1}{|\boldsymbol r|^2}, \quad |\boldsymbol r|\to 0##
in physics ?
 
Physics news on Phys.org
wrobel said:
Do exist examples of attraction forces with such a type potential
##V(\boldsymbol r)\sim-\frac{1}{|\boldsymbol r|^2}, \quad |\boldsymbol r|\to 0##
in physics ?
Just spit-balling here... An inverse square potential would imply an inverse cube force law. What do we have for inverse cube forces?

How about the electrostatic force on (or from) a dipole. That should scale as the differential of an inverse square, i.e. as an inverse cube.
 
  • Like
Likes jim mcnamara and Dale
Thanks. Actually I need physics examples at least such that
##V\sim-\frac{1}{|\boldsymbol r|^n},\quad n\ge 2##
 
jbriggs444 said:
How about the electrostatic force on (or from) a dipole. That should scale as the differential of an inverse square, i.e. as an inverse cube.
Excellent response. You could do arbitrary order multipoles to get any n>0 desired
 
wrobel said:
Thanks. Actually I need physics examples at least such that
##V\sim-\frac{1}{|\boldsymbol r|^n},\quad n\ge 2##
I am not sure how the suggestion of a dipole fails to satisfy that requirement.

It is a net attractive force and consequently has a negative potential everywhere referenced to zero at infinity. So the sign is right. It approximates an inverse square potential. So the approximation is right (when r >> size of dipole). And n=2 which satisfies n>=2.
 
Look up the "multipole expansion" used in molecular physics (for example, in the textbooks by Demtröder).

You get a ##-1/R^2## potential for ion-dipole interaction, ##-1/R^3## for dipole-dipole, ##-1/R^4## for ion-induced dipole, and so on.
 
Thank you everybody so much!

It seems I still have some stupid questions. I have been thinking that dipole is the potential of the type ##V=\frac{\cos\varphi}{r^2}## (in polar coordinates) but this potential changes sign.
Could you please be more detailed?
 
wrobel said:
It seems I still have some stupid questions. I have been thinking that dipole is the potential of the type ##V=\frac{\cos\varphi}{r^2}## (in polar coordinates) but this potential changes sign.
Could you please be more detailed?
In simple terms, a "dipole" would be a pair of equal and opposite charges with some fixed separation. For example, a positive charge and an equal negative charge on opposite ends of an insulating stick.

The net charge of this dipole is zero. And we can consider its location to be the midpoint between the two charges.

Now add a fixed positive point charge at the origin of your coordinate system and have this dipole floating in space somewhere. One could use a negative point charge instead. It changes nothing. What is the force of the point charge on the dipole?

Well, the dipole is going to rotate under the influence of the field so that the negative end faces the central charge and the positive end faces away. That means that your ##cos\varphi## term goes away.

Edit: Apologies for the length and the simple mindedness of the response. I was talking my way through it until I finally got to the point of understanding how you'd arrived at your formulation.
 
Last edited:
wrobel said:
Thank you everybody so much!

It seems I still have some stupid questions. I have been thinking that dipole is the potential of the type ##V=\frac{\cos\varphi}{r^2}## (in polar coordinates) but this potential changes sign.
Could you please be more detailed?
Are you looking asymptotically for a spherically symmetric potential from a localized source ?
 

Similar threads

Back
Top