Nugatory
Mentor
- 15,486
- 10,657
Except that this just isn't right. To see the problem we have to define exactly what "Travels more slowly" means, and that is harder than it looks. Say that we have two points A and B on the path of the light beam. We have a detector at point A and a detector at point B; the light flash passes A, a bit later it arrives at arrives at B; it seems obvious that if we divide the distance between A and B by the travel time between the two detections we'll have the speed of light... but both that distance and that time depend on our choice of coordinates.J O Linton said:Essentially the idea is that the temporal component of the bending is due to the fact that light passing near the star travels more slowly (just like sound waves traveling over water or light waves in a graded index optical fibre)
First, what is the distance? That will be the spacetime interval between the point on A's worldline where the detection happened and that point on B's worldline which happened "at the same time", which is to say has the same time coordinate. Clearly this will depend on our simultaneity convention, we can make it come out to be pretty much any arbitrary number according to what "at the same time" means.
Second, what is the travel time? It's the difference between what A's clock read at its detection event and what B's clock reads at its detection event - but only if the two clocks are synchronized, meaning that they read the same thing at the same time, so again we require a simultaneity convention. It doesn't help to appeal to some third party, say us astronomers far from the sun and looking at our lab clock; that just means that we're choosing an arbitrary simultaneity convention between our lab clock and the two detectors.
There is a standard way out of this impasse: A and B are close enough that we can approximate the spacetime between them as locally flat and use Einstein clock synchronization and the methods of special relativity to define both the travel time and the travel distance. When we do this (and it would be somewhat perverse not to) we will always find that the distance divided by the time is ##c##.
I fear that the confusion is on your end. What you are calling an "elapsed time" is a proper time: It is the proper time between two readings of some remote observer's clock, when the readings are made at the same time (the simultaneity convention reenters the discussion) as the two events between which you are determining the elapsed time.(The contributor who mentioned that in GR a geodesic maximises the proper time was confusing proper time with elapsed time. In any case the proper time of a light ray is always zero whichever way it travels.)