The body slides off an inclined plane

Adeopapposaurus
Messages
3
Reaction score
0
Homework Statement
The body slides off an inclined plane with an inclination angle of α = 60°. After t = 2s, the body speed is v = 14.7 m/s. Find the friction coefficient f. The initial velocity of the body is 0 m/s and the gravity acceleration g = 10 m/s^2 .
Relevant Equations
F = f * N
F = fmg*cos(α)
ma = mg * sinα - fmg * cosα
ma = mg * sinα - fmg * cosα
a = g (sinα-f * cosα)
v = g*t(sinα - f * cosα)
14.7 = 10 * 2 (sin60 - f * cos60)
f = 0.26

Can someone please check if my solution is correct? I'd really appreciate that.
 
Physics news on Phys.org
Looks right.
 
  • Like
Likes Adeopapposaurus
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top