Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The Carrier of an Emf

  1. Jul 29, 2008 #1
    The Carrier of an Emf is in many definite/indefinite parts the net of the circuits Total Resistance (Rt). These definite/Indefinite parts are the SMALLEST degree expressed to that of a single atom, the basic Resistive properties or qualities of Itself, and the electron structure as pertaining to orbitals and bonds of Copper Atoms, or (RESISTANCE) as we call it.

    Therefore as a consequence.... the longer the carrier of an EMF, the more definite/indefinite parts or Quantum Mechanics of “Atoms” the Emf must overcome and endure to pass current equally through the Circuit, Thus Increasing the Total Resistance in respect to the Emf.

    The Carrier will be expressed as the Conductor Wire and the Conductor Load, because it carries the Emf.

    For Example: r1+r2+r3+r4+r5+r6+r7+r8+r9......ect; Consider these Atoms throughout the Entire length of Conductor Wire to the SMALLEST degree. This is the basic Resistance of each atom to an Emf that must transfer electrons through it.

    And R10+R11+R12+R13+R14+R15+R16+R17+R18......ect. Consider these also Atoms throughout the Entire length of the Conductor Load to the SMALLEST degree. This is the basic Resistance of each atom to an Emf that must transfer electrons through it.

    Copper Atoms: Which is expressed above as Lowercase r's. (The Conductor Wire)
    Aluminum Atoms: Which is expressed above as Uppercase R's. (The Conductor Load)


    First Imagine a strand of Conductive Copper Wire consisting of Single Copper atoms, followed by a strand of Conductive Load. (r1+r2+r3+r4+r5+r6+r7+r8+r9+R10+R11+R12+R13+R14+R1 5+R16+R17+R18)

    Now induce an Emf that is suposedly insufficient to work the Load.

    Before I can move on I need to ask these questions…………….

    1. A. What happens as a result of insufficient EMF?
    B. Does the charge die along the way? If so WHY? HOW?


    2. A. Does the insufficient Emf induce current on ANY electrons or only SOME?
    B. If some do they squash against the ones that can’t move???
    C. Is there momentarily Current only until the electrons come to a hault?
     
  2. jcsd
  3. Jul 30, 2008 #2

    NoTime

    User Avatar
    Science Advisor
    Homework Helper

  4. Jul 30, 2008 #3
    Actually I was asking about this....

    1. A. What happens as a result of insufficient EMF?
    B. Does the charge die along the way? If so WHY? HOW?


    2. A. Does the insufficient Emf induce current on ANY electrons or only SOME?
    B. If some do they squash against the ones that can’t move???
    C. Is there momentarily Current only until the electrons come to a hault?
     
  5. Jul 30, 2008 #4

    NoTime

    User Avatar
    Science Advisor
    Homework Helper

    Your question isn't very clear.
    You at least need to define what you mean by "insufficient".

    "die along the way" is equally obscure.
    The charge does not change, only how it is distributed changes.

    EMF is a potential for action.
    Not an action unto itself.
    You might think of a boulder sitting on a hill.
    It has the potential to do work, but just may sit there doing nothing.

    Does that help?
     
  6. Jul 31, 2008 #5
    Lets Start with this…….Then we can move on,

    1. What happens to an Electron which is slightly induced by influence of a weak Electro Magnetic Force in reference to an excessive resistance across a conductor?………A.) Does that ONE Electron or ANY electron for that matter squash against the ones that can’t move until they collide or repel to a hault??? In a nutshell does it try to budge or squeeze against neighboring atoms as consequence of potential difference?.............The Electron is obviously subject to an insufficient potential difference to transfer itself and or its energy/force to an adjacent atom because of its own resistive properties dealing with the quantum mechanics of the electron structure as pertaining to orbitals and bond strength to its parent atom and that of neighboring atoms.

    To put this in stupid terms:

    Think of it like your car just broke down.....you are pissed off and you try to push your car......
    you are planning on transfering all your Energy to that car....whether you might move it or not is due to its resistive properties and your applied force.
    Now you might not be transfering ENOUGH energy to rotate your tires fully, BUT IT DOESNT MEAN THAT THEY DO NOT MOVE, AND IT DOESNT MEAN YOUR POWER ISNT DISSIPATING SOME AMOUNT OF ENERGY THROUGH OUT THE REST OF THE CAR, NOR DOES IT REFUTE ENERGY WORKING AGAINST THE RESISTANCE OF THAT CAR.
     
    Last edited: Jul 31, 2008
  7. Jul 31, 2008 #6

    NoTime

    User Avatar
    Science Advisor
    Homework Helper

    Looks like I guessed right the first time.
    In bulk metals the electrons are not necessarily bound to orbitals.
    To some degree the electrons are free to float around the material.
    This is the mechanism that keeps the metal in one chunk instead of dissipating as a gas.
    Resistance is a materials property and does not really apply to individual atoms.
    For a better understanding of this, I would suggest you read the reference I pointed you to as well as others in the same line.
     
  8. Jul 31, 2008 #7
    This still does not answer the question.
     
  9. Jul 31, 2008 #8

    NoTime

    User Avatar
    Science Advisor
    Homework Helper

    What part of your question did the referenced paper not answer?
    You may also want to do some reading on Hall effect and super conduction.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: The Carrier of an Emf
Loading...