fslab said:
Hello,
This is a multi-part question that stems from understanding how X-ray diffraction occurs in crystals (eg. protein crystals).
1. Diffraction occurs when Bragg's Law is satisfied, but I'm sure the waves aren't actually being reflected. The x-ray's are scattering. What type of scattering is it? (I think it is Rutherford scattering or Rayleigh scattering)
It is elastic scattering, or something very close to elastic. The scattered photon doesn't lose significant amounts of energy. If the photon did change energy, the scattered wave would change wavelength. The scattered wave would probably change phase. The scattered wave from an atom couldn't interfere with scattered waves from other atoms.
fslab said:
2. When this scattering occurs, is the electron absorbing and re-emitting the x-ray? If so, is this the type of absorption that occurs as electrons shift energy shells, or is the absorption and re-emission a result of electrons moving in the electron cloud (eg. oscillating)?
No. The electron can't be absorbing and remitting the x-ray energy. If it did, the result "scattered" wave from one atom can't interfere with the scattered wave from other atoms.
There are x-rays that are created by the absorption and emission x-ray energy. This is called x-ray fluorescence. X-ray fluorescence occurs at a longer wavelength then the incident x-rays. Because the phase is randomized, there is no diffraction pattern associated with x-ray fluorescence. X-ray fluorescence is important in chemical analysis, but not in crystallographic analysis.
One caveat. Quantum mechanical analysis, which you probably won't need for a while, includes both real and virtual photons.
I have been talking about real photons. There is a concept that scattering occurs by absorption and re-emission of virtual photons. With virtual photons, energy is created and destroyed on a time scale where the Heisenberg uncertainty principle. However, the energy that is created and destroyed can't be measured.
One can say that the electrons in the atoms of the crystal, when the incident xray wave hits them, exchanges virtual photons. This can confuse discussions with experts between field. Virtual photon exchange is strictly an internal process within the atom, and doesn't directly effect the diffraction pattern.
The real photons contributing to the diffraction pattern do not change energy. Real photons that change energy can't contribute to the diffraction pattern.
Virtual photons are unimportant for crystal analysis. Quantum mechanics is generally unnecessary for determining the structure of a crystal.
fslab said:
3. I assume that the electrons are re-emitting x-rays and those x-rays that are in phase result in diffraction. Electrons can emit x-rays in all directions, why is it that diffraction is strongest in the direction of the x-ray source/ x-ray generator. That is, why is the strongest diffraction around the beam stop on the detector? Why don't you get low resolution, high intensity diffraction anywhere else (eg. 90 degrees to the x-ray source)?
It is a little unclear what you mean by the diffraction is strongest in the direction of the x-ray source and generator. A diffraction pattern can be seen over a broad range of angles. I think that a high resolution diffraction pattern, if not high intensity, can even be seen at 90 degrees. I conjecture that you are talking about the extinction component.
The extinction component is the "shadow" of the atoms. The photons that are scattered can't proceed in the direction of the source. For the limit of measurements done on a classical scale, the extinction profile is the shadow of the atoms. Ray optics is usually used to analyze the shadow of large objects. However, fine angular measurements would show that the shadow contains a lot of structure that can't be determined by ray optics.
The extinction component is a diffraction phenomenon. The conventional shadow of large objects is merely the first dark band of the diffraction pattern. The extinction component is caused by the interference between the scattered light and the incident radiation.
There are three components of energy flow in a scattering experiment. They are the incident flux, the scattered flux, and the extinction flux. The incident flux comes from the source. Diffraction patterns are associated with the aperture. The scattered flux comes only from the atoms of the object. Interference between waves scattered from different atoms dominates the diffraction pattern of the scattered flux. The extinction flux is the shadow of the atoms. The diffraction pattern of the scattered flux is dominated by interference between the waves scattered from the atoms and the incident wave.
Most of what you learn about in classes on diffraction probably concerns the scattered radiation. Most diffraction experiments are done at extreme scattering angles. I think that a lot of experiments are done at 90 degrees. However, at very small scattering angles the extinction flux is important. Since it is hard to analyze, most diffraction experiments include a baffle to block off the extinction flux. The baffle at small angles has two purposes. First, it blocks off the shadow of the atoms. The shadow of the atoms has some information on the source, which crystallographers don't care about. Second, the baffle blocks off the incident radiation. The incident radiation contains information about the source and contains no information about the crystal. Therefore, the baffle can be considered a "filter" that screens out information about the source of xray radiation. Beer's Law comes from the extinction flux. The incident flux minus the extinction flux is the transmitted beam. It decreases due to both absorption of radiation and scattering. It may be useful to consider the experimental differences between using Beer's Law and using the law of diffraction.
An extinction coefficient is determined by the extinction flux. Beer's Law is the exponential decay of energy in a beam with time. The exponential drop in intensity of xray radiation from one end of the crystal can be described on two scales of angular resolution. One one hand, the extinction coefficient is determined by the interference between incident radiation and scattered radiation. When measuring the extinction coefficient, one doesn't use a baffle.
The scattered radiation may peak at small scattering angles. However, small scattering angles is also where the shadow lies. Actual experiments involve a compromise. Angles should be small enough to get intense scattering but large enough to avoid the shadow. Note all the incident photons are scattered by the crystal. If the sample is thin and the xray photons very high in energy, most photons pass through the crystal without scattering. The atoms are small so there is plenty of space between the atoms. The value of the cross section is small, and the spacing between atoms high. Most photons just pass through. Hence, the total amount of light passing through the sample at small angles will mostly be due to incident flux. However, there will be structure to the diffraction of the crystal added by the shadow of the atoms. If all you want is the structure of the crystal, the transmitted beam is just unwanted background.