MHB The column gets out of the basis

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Basis Column
Click For Summary
The discussion focuses on finding basic feasible solutions for a system of linear equations using the simplex method. The initial solution identified is (0, 0, 10, 24, 2), which is basic feasible and non-degenerate. The process involves pivoting to update the tableau, with the first pivot leading to a new solution of (5, 0, 0, 9, 2). Subsequent pivots refine the solution further, resulting in (56/13, 18/13, 0, 0, 8/13) and (664/169, 2, 8/3, 0, 0), both of which are also basic feasible and non-degenerate. The thread concludes with a consideration of the next steps in the simplex algorithm.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Find the basic feasible solutions of the system of restrictions:

$$2x_1+x_2+x_3=10 \\ 3x_1+8x_2+x_4=24 \\ x_2+x_5=2 \\ x_i \geq 0, i=1,2,3,4,5$$

We notice that the rank of the matrix $A=\begin{pmatrix}
2 & 1 & 1 & 0 & 0\\
3 & 8 & 0 & 1 & 0\\
0 & 1 & 0 & 0 & 1
\end{pmatrix}$ is $3$ and obviously for $x_1=x_2=0$ we have the solution $\overline{x_0}=(0,0,10,24,2)$ which is basic feasible non degenerate.
Thus the first tableaux of the algorithm of the searching of the vertices is the following:

$$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta \\ \\
P_3 & 10 & 2 & 1 & 1 & 0 & 0 & 10/2\\
P_4 & 24 & 3 & 8 & 0 & 1 & 0 & 24/3\\
P_5 & 2 & 0 & 1 & 0 & 0 & 5 & -
\end{matrix}$$We pick $P_1$ to get in the basis.

$$\theta_0= \min \{ \frac{10}{2}, \frac{24}{3}\}=5$$

The pivot is the element $2$ so the column $P_3$ gets out of the basis.How do we deduce that $P_3$ gets out of the basis? Since its the only column from $P_3, P_4, P_5$ that contains at the row where the pivot is a positive number? (Thinking)
 
Physics news on Phys.org
Ok, I understood why $P_3$ gets out of the basis.Then we get this matrix:$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & 5 & 1 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & & \Gamma_1'=\frac{1}{2} \Gamma_1\\ \\
P_4 & 9 & 0 & \frac{13}{2} & -\frac{3}{2} & 1 & 0 & & \Gamma_2'=\Gamma_2-3\Gamma_1'\\ \\
P_5 & 2 & 0 & 1 & 0 &0 & 1 & & \Gamma_3'=\Gamma_3-0 \Gamma_1'
\end{matrix}$So the new solution that we found is $(5,0,0,9,2)$ which is basis feasible non degenerate.Then we choose to get in the basis whether the column $P_2$ or $P_3$.
We choose $P_2$.

$$\theta_0= \min \{ \frac{5}{\frac{1}{2}}, \frac{9}{\frac{13}{2}}, \frac{2}{1}\}=\frac{18}{3}$$

The pivot is the element $\frac{13}{2}$, so $P_4$ gets out of the basis.

Then we have this matrix:

$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & \frac{56}{13} & 1 & 0 & \frac{8}{13} & -\frac{1}{13} & 0 & & \Gamma_1'= \Gamma_1-\frac{1}{2} \Gamma_2'\\ \\
P_2 & \frac{18}{13} & 0 & 1 & -\frac{3}{13} & \frac{2}{13} & 0 & & \Gamma_2'=\frac{2}{13} \Gamma_2\\ \\
P_5 & \frac{8}{13} & 0 & 0 & \frac{3}{13} &-\frac{2}{13} & 1 & & \Gamma_3'=\Gamma_3-\Gamma_2'
\end{matrix}$So the new solution that we found is $\left( \frac{56}{13}, \frac{18}{13}, 0,0, \frac{8}{13}\right)$ which is basic feasible non degenerate.Then we choose $P_3$ to get in the basis.

$\theta_0=\min \{ \frac{56}{8}, \frac{8}{3}\}=\frac{8}{3}$The pivot is the element $\frac{3}{13}$ and so the column $P_5$ gets out.
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & \frac{664}{169} & 1 & 0 & 0 & \frac{1}{3} & -\frac{8}{3} & & \Gamma_1'= \Gamma_1-\frac{8}{13} \Gamma_3'\\ \\
P_2 & 2 & 0 & 1 & 0 & 0 & 1 & & \Gamma_2'= \Gamma_2+\frac{3}{13} \Gamma_3'\\ \\
P_3 & 0 & 0 & 0 & 1 &-\frac{2}{3} & \frac{13}{3} & & \Gamma_3'=\frac{13}{3}\Gamma_3
\end{matrix}$

Thus the new solution is $\left( \frac{664}{169}, 2 , \frac{8}{3}, 0, 0\right)$ which is basic feasible non degenerate.

If we choose $P_5$ we don't get a basic feasible solution, so we have to pick $P_1$.Is it right so far? (Thinking)
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...