The column gets out of the basis

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Basis Column
Click For Summary
SUMMARY

The discussion focuses on the process of finding basic feasible solutions for a linear programming problem using the Simplex method. The initial system of equations is defined, and the rank of the matrix is established as 3. The participants detail the tableau transformations, specifically how columns enter and exit the basis, with particular emphasis on the columns P3 and P4. The final basic feasible solution derived is (664/169, 2, 8/3, 0, 0), confirming the non-degenerate nature of the solution.

PREREQUISITES
  • Understanding of linear programming and the Simplex method
  • Familiarity with matrix operations and tableau methods
  • Knowledge of basic feasible solutions and non-degenerate solutions
  • Ability to interpret pivot operations in the context of linear programming
NEXT STEPS
  • Study the Simplex method in-depth, focusing on tableau transformations
  • Learn about duality in linear programming and its implications
  • Explore sensitivity analysis in linear programming solutions
  • Investigate alternative methods for solving linear programming problems, such as the Interior Point method
USEFUL FOR

Mathematicians, operations researchers, and students studying optimization techniques, particularly those interested in linear programming and the Simplex algorithm.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Find the basic feasible solutions of the system of restrictions:

$$2x_1+x_2+x_3=10 \\ 3x_1+8x_2+x_4=24 \\ x_2+x_5=2 \\ x_i \geq 0, i=1,2,3,4,5$$

We notice that the rank of the matrix $A=\begin{pmatrix}
2 & 1 & 1 & 0 & 0\\
3 & 8 & 0 & 1 & 0\\
0 & 1 & 0 & 0 & 1
\end{pmatrix}$ is $3$ and obviously for $x_1=x_2=0$ we have the solution $\overline{x_0}=(0,0,10,24,2)$ which is basic feasible non degenerate.
Thus the first tableaux of the algorithm of the searching of the vertices is the following:

$$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta \\ \\
P_3 & 10 & 2 & 1 & 1 & 0 & 0 & 10/2\\
P_4 & 24 & 3 & 8 & 0 & 1 & 0 & 24/3\\
P_5 & 2 & 0 & 1 & 0 & 0 & 5 & -
\end{matrix}$$We pick $P_1$ to get in the basis.

$$\theta_0= \min \{ \frac{10}{2}, \frac{24}{3}\}=5$$

The pivot is the element $2$ so the column $P_3$ gets out of the basis.How do we deduce that $P_3$ gets out of the basis? Since its the only column from $P_3, P_4, P_5$ that contains at the row where the pivot is a positive number? (Thinking)
 
Physics news on Phys.org
Ok, I understood why $P_3$ gets out of the basis.Then we get this matrix:$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & 5 & 1 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & & \Gamma_1'=\frac{1}{2} \Gamma_1\\ \\
P_4 & 9 & 0 & \frac{13}{2} & -\frac{3}{2} & 1 & 0 & & \Gamma_2'=\Gamma_2-3\Gamma_1'\\ \\
P_5 & 2 & 0 & 1 & 0 &0 & 1 & & \Gamma_3'=\Gamma_3-0 \Gamma_1'
\end{matrix}$So the new solution that we found is $(5,0,0,9,2)$ which is basis feasible non degenerate.Then we choose to get in the basis whether the column $P_2$ or $P_3$.
We choose $P_2$.

$$\theta_0= \min \{ \frac{5}{\frac{1}{2}}, \frac{9}{\frac{13}{2}}, \frac{2}{1}\}=\frac{18}{3}$$

The pivot is the element $\frac{13}{2}$, so $P_4$ gets out of the basis.

Then we have this matrix:

$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & \frac{56}{13} & 1 & 0 & \frac{8}{13} & -\frac{1}{13} & 0 & & \Gamma_1'= \Gamma_1-\frac{1}{2} \Gamma_2'\\ \\
P_2 & \frac{18}{13} & 0 & 1 & -\frac{3}{13} & \frac{2}{13} & 0 & & \Gamma_2'=\frac{2}{13} \Gamma_2\\ \\
P_5 & \frac{8}{13} & 0 & 0 & \frac{3}{13} &-\frac{2}{13} & 1 & & \Gamma_3'=\Gamma_3-\Gamma_2'
\end{matrix}$So the new solution that we found is $\left( \frac{56}{13}, \frac{18}{13}, 0,0, \frac{8}{13}\right)$ which is basic feasible non degenerate.Then we choose $P_3$ to get in the basis.

$\theta_0=\min \{ \frac{56}{8}, \frac{8}{3}\}=\frac{8}{3}$The pivot is the element $\frac{3}{13}$ and so the column $P_5$ gets out.
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & P_5 & \theta & \\ \\
P_1 & \frac{664}{169} & 1 & 0 & 0 & \frac{1}{3} & -\frac{8}{3} & & \Gamma_1'= \Gamma_1-\frac{8}{13} \Gamma_3'\\ \\
P_2 & 2 & 0 & 1 & 0 & 0 & 1 & & \Gamma_2'= \Gamma_2+\frac{3}{13} \Gamma_3'\\ \\
P_3 & 0 & 0 & 0 & 1 &-\frac{2}{3} & \frac{13}{3} & & \Gamma_3'=\frac{13}{3}\Gamma_3
\end{matrix}$

Thus the new solution is $\left( \frac{664}{169}, 2 , \frac{8}{3}, 0, 0\right)$ which is basic feasible non degenerate.

If we choose $P_5$ we don't get a basic feasible solution, so we have to pick $P_1$.Is it right so far? (Thinking)
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
1
Views
3K