sophiecentaur said:
You could say that the floor is doing work on the block too.
Did you mean to reverse what I said? You just repeated it as stated. If you meant the block is doing work on the floor, it is, but in these types of problems we generally focus on one object at a time. Mixing and matching forces on different objects is what creates the confusion you referenced at the start of your first post. Keeping it straight means focusing on the block:
1. When you push it, you apply a force over a distance, providing positive work.
2. When friction slows it down, it applies a force over a distance, providing negative work.
Which of the two would be dissipating most energy (heat)? It would have to depend on the nature of the actual surfaces and that would be one reason why I personally find the Useful Work would be the only work to be identifiable. All the rest, in this case, would be just wasted energy.
I am not contradicting conservation of Energy just suggesting a clearer use of the term Work.
That the friction force is dissipative can be used as a way to define [not]"useful" work, sure. I like that much better than avoiding even saying it is work at all (which is what you said in your first post that you prefer).
For instance, if you say that the Earth does work on the accelerating car, that could make sense becaure the car actually acquires KE. The mass ratio is so huge that the Earth gains virtually no momentum and virtually zero KE. How, then is it reasonable to say the car is doing work ON the Earth if there is none of the Fuel Energy transferred to tthe Earth? Mathematically, it's true but the description of the event is misleading. The car is really doining work on Itself! because the Energy starts and ends wih the car. That's my problem.
Momentum yes, KE, no. But regardless/again, focusing on one object at a time avoids accidentally mixing and matching.
Where and exactly how the energy is added or dissipated doesn't have any effect on the work/energy relationship; it's just a means for transmitting the energy (unless of course its the mechanism itself that is being asked about). That's another common misunderstanding we get -- just last week we had a thread on the mechanics of walking, where it was an issue (a frequent example). To simplify, imagine a spring pushing a block away from a wall. The mass of the spring is a tiny fraction of the mass of the block. Constrain the analysis to the expansion of the spring to neutral position. Does it actually matter to the work/energy calculation whether the spring is attached to the block, the wall, both or neither? Problems arise when people do the analysis assuming the spring (your leg) is irrelevant, and then at the end decide they want it to be relevant and can't understand why their own analysis is both correct and incorrect at the same time!
[Mechanical] Energy is not an object that gets handed from one entity to the other. It's not a cake that gets baked in one place, being created there and staying there. It's the effect of an interaction between the two objects. Sure, you can say that at its most basic, burning fuel provides the car with kinetic energy. But the
how of it is due to a Newton's 3rd Law force pair interaction between the Earth and ground. Whether the fuel is burned in the car or on the ground isn't critical to the analysis: it usually just gets in the way.