The Conjugate Method for Limits

AI Thread Summary
The discussion centers on the use of the conjugate method for evaluating limits, particularly when faced with expressions that yield a zero in the denominator. It highlights that while the conjugate method can simplify certain limits, it may not always resolve the issue of a zero denominator, especially when the numerator contains a function like f(x). The examples provided illustrate that both the conjugate method and factoring can lead to similar results, raising questions about their distinctiveness and applicability. The conversation emphasizes that multiplying by the conjugate is meant to create common factors for cancellation, but this approach may not be effective if the numerator is not conducive to simplification. Ultimately, the discussion seeks clarity on whether there are specific scenarios where one method is preferable over the other.
charley076
Messages
2
Reaction score
0
I'm reviewing limits to tutor a student in precalc and came across a problem.

The conjugate method multiplies the numerator and denominator by the conjugate of the numerator or denominator to simplify the equation. However, after a quick example I wrote for myself, I found that:

lim x-> 3
f(x) / (x-3)
Conjugate Method on the Denominator
lim x-> 3
f(x)*(x+3) / (x^2-9)
The limit still has a 0 in the denominator

lim x-> -3
f(x) / (x+3)
Conjugate Method on the Denominator
lim x-> -3
f(x)*(x-3) / (x^2-9)
The limit still has a 0 in the denominator

The examples of "The Conjugate Method" that I've found online have all multiplied by the conjugate to create a common factor to eliminate the 0 in the denominator.

Ex.
lim x-> 4
(sqrt(x)-2) / x-4
Conjugate of Numerator
lim x-> 4
x-4 / ((x-4)(sqrt(x)+2)
Cancel common factor
lim x-> 4
1 / (sqrt(x)+2)
=1/4

My issue is that the conjugate method is the same as the factoring method as far as I understand it. Is there a difference or is the conjugate method simply easier to use when the factors aren't as easily identifiable.

My point using the example above is:
lim x-> 4
(sqrt(x)-2) / x-4
Factor the denominator into (sqrt(x)-2) & (sqrt(x)+2)
lim x-> 4
(sqrt(x)-2) / ((sqrt(x)-2)(sqrt(x)+2))
Cancel (sqrt(x)-2)
lim x-> 4
1 / (sqrt(x)+2)
= 1/4

Is there a difference between these methods?
Is there a time when only one or the other can be used?
 
Last edited:
Mathematics news on Phys.org
In your first two examples, you have f(x) in the numerator, so multiplying the expression by 1 in the form of the conjugate over itself isn't going to get you anywhere.

The purpose of multiplying by the conjugate over itself is to be able to get common factors in the numerator and denominator that you can eliminate in the hope of being able to evaluate the rest of the limit expression.
 
Sorry for the confusion, the reason I put f(x) as the numerator was b/c i didn't know what to put there that wouldn't cause the limit to evaluate to infinity. I just meant f(x) to be filler, i.e. regardless of what the numerator is, multiplying top and bottom by the conjugate of the denominator doesn't resolve the 0 in the denominator.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
10
Views
2K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
11
Views
2K
Back
Top