The derivative of the dot product "distributes" over each vector

Click For Summary

Homework Help Overview

The discussion revolves around the differentiation of the dot product of two vectors, specifically examining the expression for the derivative of the dot product as it relates to the changing angle between the vectors and their magnitudes over time.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the differentiation of the dot product, questioning the validity of specific steps in the original poster's reasoning. There is a focus on whether the expression involving the magnitudes and angles of the vectors is appropriate for this context.

Discussion Status

Some participants have provided hints and suggestions for alternative approaches, such as expressing the dot product in terms of vector components. There is ongoing questioning about the correctness of certain assumptions regarding vector magnitudes and angles.

Contextual Notes

Participants highlight misconceptions regarding the relationship between the magnitudes of vectors and their derivatives, as well as the implications of changing angles between the vectors during differentiation.

brotherbobby
Messages
766
Reaction score
171
Homework Statement
Prove that : ##\boxed{\dfrac{d}{dt}(\mathbf{A}\cdot \mathbf{B})=\dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}+\mathbf{A}\cdot \dfrac{d\mathbf{B}}{dt}}##
Relevant Equations
The dot product of two vectors ##\mathbf{A}## and ##\mathbf{B}## is given by ##\mathbf{A}\cdot \mathbf{B}=AB\cos\theta##, where ##\theta## is the (smaller) angle between them.
1730185967585.png
Drawing :
I draw a diagram explaining the situation to the right. The vectors ##\mathbf{A}## and ##\mathbf{B}## are drawn at some time ##t## making an angle ##\theta## between them. At some later time ##t+dt##, the same vectors have changed to ##\mathbf{A}(t+dt)## and ##\mathbf{B}(t+dt)## while their angle has changed to some ##\theta(t+dt)##.


Attempt :

We have ##\dfrac{d}{dt}(\mathbf{A}\cdot \mathbf{B})=\dfrac{d}{dt}(AB\cos\theta)=\dfrac{dA}{dt}B\cos\theta+A\dfrac{dB}{dt}\cos\theta+AB\dfrac{d}{dt}\cos\theta##
##=\dfrac{dA}{dt}B\cos\theta+A\dfrac{dB}{dt}\cos\theta-AB\sin\theta \dfrac{d\theta}{dt}##
##=\underbrace{\dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}}_{\text{Is this correct?}}+\underbrace{\mathbf{A}\cdot \dfrac{d\mathbf{B}}{dt}}_{\text{Is this correct?}}-AB\sin\theta \dfrac{d\theta}{dt}##

Even if I am correct in the first two terms, the third term is a violation of the required statement of the problem.

Request : A hint as to where am going wrong would be very welcome.
 
Physics news on Phys.org
The step where you have asked if it is correct is not correct. I would go so far as to say that the expression ##\vec A \cdot \vec B = AB \cos(\theta)## will not be very useful for this. Instead, I suggest that you write your inner product in terms of the vector components, i.e.,
$$
\vec A \cdot \vec B = \sum_{i = 1}^3 A_i B_i
$$
and work from there.
 
  • Like
Likes   Reactions: PeroK
Orodruin said:
The step where you have asked if it is correct is not correct.
I wrote ##\dfrac{dA}{dt}B\cos\theta = \dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}##. Why is it wrong?
Orodruin said:
I would go so far as to say that the expression A→⋅B→=ABcos⁡(θ) will not be very useful for this
Yes, so it seems, but surely there's got to be a reason why it doesn't work out. Perhaps it is connected to the previous point above.

I have found a solution to the problem in a different way, not far from what you suggested. I'd post it presently. For the moment, I am curious as to why doesn't my method above doesn't work.
 
brotherbobby said:
I wrote ##\dfrac{dA}{dt}B\cos\theta = \dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}##. Why is it wrong?
Consider the case where ##\mathbf{A}## is changing direction but not magnitude.
 
brotherbobby said:
Yes, so it seems, but surely there's got to be a reason why it doesn't work out.
A more relevant question is: Why you think that it would work out?
You yourself have indicated that you are uncertain and therefore trying to work out why it is or isn't the case is a good place to start. The hint by @Ibix above will provide you with a scenario where it is clearly false.
 
  • Like
Likes   Reactions: PeroK
brotherbobby said:
I wrote ##\dfrac{dA}{dt}B\cos\theta = \dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}##. Why is it wrong?
First ##A = |\vec A| = \sqrt{\vec A \cdot \vec A}## is the magnitide of the vector ##A##. In general ##\frac{dA}{dt} \ne \big | \frac{d \vec A}{dt}\big |##. The obvious example being, as above, when ##\vec A## is changing but not in magnitude.

In any case, assuming that ##\frac{dA}{dt} = \big | \frac{d \vec A}{dt}\big |## is a fundamental misconception.

Also, the angle between ##\vec A## and ##\vec B## is not the same as the angle between ##\frac{d\vec A}{dt}## and ##\vec B##. That's another major misconception.
 
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
13
Views
1K
Replies
46
Views
6K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
8
Views
1K
Replies
8
Views
2K
Replies
31
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K