Abrain
- 8
- 0
Do somebody knows anything about the Dirca's identity?
<br /> \begin{equation} \label{Dirac}<br /> \frac{\partial^2}{\partial x_{\mu}\partial x^{\mu}} \delta(xb_{\mu}xb^{\mu}) =<br /> -4\pi \delta(xb_0)\delta(xb_1)\delta(xb_2)\delta(xb_3)<br /> \end{equation}<br />
here
xb, is the 4-vector $x-b$ in Minkowsky spacetime
\delta$ is the Dirac delta function
x_0 = -x^0, \quad x_1 = x^1, \quad x_2 = x^2, \quad x_3, = x^3
Do you know where can i find some material about it?
Thanks!
<br /> \begin{equation} \label{Dirac}<br /> \frac{\partial^2}{\partial x_{\mu}\partial x^{\mu}} \delta(xb_{\mu}xb^{\mu}) =<br /> -4\pi \delta(xb_0)\delta(xb_1)\delta(xb_2)\delta(xb_3)<br /> \end{equation}<br />
here
xb, is the 4-vector $x-b$ in Minkowsky spacetime
\delta$ is the Dirac delta function
x_0 = -x^0, \quad x_1 = x^1, \quad x_2 = x^2, \quad x_3, = x^3
Do you know where can i find some material about it?
Thanks!