The Einstein and Ricci tensors

  • Thread starter Thread starter TrickyDicky
  • Start date Start date
  • Tags Tags
    Einstein Tensors
TrickyDicky
Messages
3,507
Reaction score
28
I'm trying to understand the Einstein field equations conceptually, and one of the things that I'd like to understand is why Einstein decided that the left side of the GR equation should be the Einstein tensor instead of the Ricci tensor, I heard that initially he entertained the idea of equating the Ricci tensor with the stress-energy tensor part, but he finally, in November 1915 came up with the final form. What were the physical reasons to decide that the Ricci tensor alone couldn't account for the curvature of the stress-energy tensor gravitational field?

Thanks
 
Physics news on Phys.org
Because energy is conserved, the stress energy tensor has zero divergence. Since he wanted to equate the stress-energy tensor on the right-hand side with the curvature of space-time on the left-hand side, he needed a tensor on the left-hand side which also had zero divergence. The Ricci tensor has a non-zero divergence, so he created the Einstein tensor, which does have zero divergence.
 
phyzguy said:
Because energy is conserved, the stress energy tensor has zero divergence. Since he wanted to equate the stress-energy tensor on the right-hand side with the curvature of space-time on the left-hand side, he needed a tensor on the left-hand side which also had zero divergence. The Ricci tensor has a non-zero divergence, so he created the Einstein tensor, which does have zero divergence.

Thanks, I suspected it was related to energy conservation issues.
Can you give a an explanation for laymen of what it means to have zero divergence, and define divergence in this context?
Thanks.
 
Zero divergence means locally conserved. Like a fluid. That the quantity flowing into any small volume is equal to the quantity flowing back out of the volume.

In differential geometry, the Bianchi identity says that what we now call the Einstein tensor is a quantity for which the divergence is exactly zero always. By making a law equating this to the mass-energy tensor, you automatically ensure the mass-energy will be locally conserved according to the theory. But I assume other candidate divergence-free curvature tensors exist; there was probably further motivation for choosing the Einstein tensor specifically..
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top