Dale said:
Agreeing with
@Ibix: As far as I know the quantity ##\Sigma |p_i|## has no purpose in physics whereas the quantity ##|\Sigma p_i|## does. I think it makes more sense to name useful quantities rather than useless ones, so I would also say that the system mass is the latter.
If I may: this is a point in favor of "rest energy" (pedagogically speaking).
Early on, we're taught that mass is the "amount of matter," and it's drilled into us that the "total mass" of a system is the sum of the masses of its constituents. Even the kids that don't pay attention know
that.
When learning SR, simply having heard the phrases "amount of matter" and "total mass" is an impediment. They're worse than useless concepts—they are confusing and misleading distractions that years of habit make difficult to purge from thought. Every time they come to mind your understanding takes a hit, and the word "mass" inevitably calls them to mind at first.
"Rest energy" comes with no such baggage. On the contrary, it's only
helped by prior contact with the energy concept. If you asked a high-school physics student with no exposure to SR how to calculate the total energy of a system in its rest frame, it wouldn't even occur to them to exclude the kinetic- and potential-energy contributions of the system's constituents. In fact, they'd probably just tell you, "add up the kinetic and potential energy," because they've done it many times. All the right intuitions follow immediately from the additivity and conservation of energy, a concept that the student already understands and which remains valid and crucial in SR. The next step is:
"You know that mass thing we talked about for years? Turns out that it's nothing but this 'rest energy' concept we're introducing (system's total energy in its rest frame). That's what Einstein's ##E_0 = mc^2## tells us. Yes, this renders the very idea of 'total mass' obsolete—what good would it do you to add up
just the rest-energies of a system's constituents? it wouldn't give you the system's rest energy (because you've left out kinetic- and potential-energy contributions). So mass isn't additive. Is mass conserved? Well, sure, but only because a closed system's
total energy is conserved in any given inertial frame, and the system's rest frame is no exception. So forget about 'total mass' and 'amount of matter,' and demote 'conservation of mass' to a trivial consequence of energy-conservation (but elevate mass's
invariance to a fact of primary importance). To stop yourself from falling into old habits, you might find it useful to think of 'rest energy' for a while whenever you encounter the word 'mass,' at least until all of this sinks in. Physicists use the word 'mass,' though."