My experience is that it is hard for students (including myself when I was a student) to forget about the Euclidean heuristics built from long training in Euclidean (plane) geometry when it comes to read a Minkowski diagram. My students told me that it was important for them that I emphasized the important difference between Euclidean and Minkowski and that instead of circles you need time- and space-like hyperbolae to determine the "unit tick marks" on the axes of different inertial reference frames depicted by them. The said, it's much easier to understand in this way than it was presented to them at high school. After some thinking I came to the conclusion that the way I treat the kinematics in
https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf
is the shortest and simplest way without too high-level math.
In Minkowski geometry there's no norm induced by the fundamental form (Minkowski product), and that makes all the difference. There are also no angles in the Eulidean sense (though there are rapidities which are similar but not the same).
I think, the right didactics is a good mixture of algebraic/analytical and geometric concepts. The geometry of spacetime, as used in physics, is analytic geometry anyway!