Ian_Brooks
- 127
- 0
Not a homework question
say we have a curve f(x,y,z)
and the tangent plane to the curve at a point (xo,yo,zo) is given by
\frac{{\partial d}}{{\partial x}}(xo,yo,zo)(x-xo) + \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(y-yo) + \frac{{\partial d}}{{\partial z}}(xo,yo,zo)(z-zo) = 0
then would the normal plane to the curve be either of the following?
\frac{{\partial d}}{{\partial y}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial z}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial y}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial z}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial z}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(z-zo) = 0
say we have a curve f(x,y,z)
and the tangent plane to the curve at a point (xo,yo,zo) is given by
\frac{{\partial d}}{{\partial x}}(xo,yo,zo)(x-xo) + \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(y-yo) + \frac{{\partial d}}{{\partial z}}(xo,yo,zo)(z-zo) = 0
then would the normal plane to the curve be either of the following?
\frac{{\partial d}}{{\partial y}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial z}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial y}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial z}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(z-zo) = 0
\frac{{\partial d}}{{\partial z}}(xo,yo,zo)(x-xo) - \frac{{\partial d}}{{\partial y}}(xo,yo,zo)(y-yo) - \frac{{\partial d}}{{\partial x}}(xo,yo,zo)(z-zo) = 0