The equation of a roller coaster loop

AI Thread Summary
The discussion centers on the mathematical modeling of a roller coaster loop, specifically the clothoid loop shape, which provides a more comfortable G-force experience compared to a circular loop. The original poster attempts to derive an equation for the loop's radius in terms of the angle, using principles of energy conservation and centripetal force. They express difficulty in accurately determining the height variable in relation to the loop's radius and angle, leading to confusion in their calculations. The conversation also touches on the broader implications of the clothoid curve in transportation design and its impact on ride comfort. The poster ultimately expresses frustration and a desire for assistance in resolving these mathematical challenges.
Whiteblooded
Messages
7
Reaction score
0
Hi everyone.

I was wondering about the equation of a roller coaster loop. Most people do not realize this, but a roller coaster loop is not a circle.. but rather a 'clothoid loop' shape.. the reason for this being, with a circular loop, the 'G force' varies quite a lot, and is uncomfortable to the rider. The clothoid loop shape gives more of a normal distribution function for G force, where G force is highest at the top of the loop. I'm trying to derive an equation for this shape.


I was originally trying to model a roller coaster car as a point mass, where the velocity is given by:

Etot = \frac{m}{2}v2 + mgh = \frac{m}{2}v02

v2 = v02 - 2gh

Where h is the height (a variable) from the base of the loop, and v0 is the velocity at the base of the loop.

Then one would put this into the centrepital force equatioon to give:

F = \frac{m}{r}v2 = \frac{m}{r} (v02 - 2gh)

Idealy, I'd like to get an equation for r in terms of the angle around the loop. To do this, I need to find h in terms of r and theta. (I think this is where everything went wrong) The value I got for h was:

h = H/2 - rcos(\theta)

Where \theta is the angle from the vertical axis of symmetry, starting at the bottom of the loop, sweeping through to the top. H is the maximum height of the loop. My value for h clearly isn't correct, because it assumes the radius always comes from the centre (H/2) of the loop.

Then when I get this value of h, I'm not sure where to go.. the idea that I have in my head would be to somehow make this force equal to a normal distribution of the form:

A*exp{-Bx2} (Where A and B are some constants/scale factors and x is a variable.. which will be a form of theta).

Then I'd try and equate that with the centrepital force as shown above, and (attempt to) rearrange for r.

Can anyone help me out with this? I've looked all over the web for the solution to this problem. http://physics.gu.se/LISEBERG/eng/loop_pe.html" Has some quite useful things on.. but it seems to skip over a lot of the mathematics and doesn't really explain it very well.
 
Last edited by a moderator:
Physics news on Phys.org
I've decided to resign from this project lol..

I believe to fully acquire an equation for these shapes, you have to know about frensel integrals... which I haven't studied yet.
 
That Clothoid curve is interesting and its relevance to early and modern railway track layout. It must also explain how some car drivers manage to give their passengers a more pleasant ride than others - and they haven't even heard of the Physics involved (I hadn't!).
 
sophiecentaur said:
That Clothoid curve is interesting and its relevance to early and modern railway track layout. It must also explain how some car drivers manage to give their passengers a more pleasant ride than others - and they haven't even heard of the Physics involved (I hadn't!).

Also I was thinking some drivers might exploit a similar principle in the choice of racing lines. Very interesting topic.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top