The exclusion of empty substructures

  • Thread starter Thread starter 1MileCrash
  • Start date Start date
  • Tags Tags
    Empty
1MileCrash
Messages
1,338
Reaction score
41
So, subspaces of vector spaces, and subgroups of groups, are not allowed to be empty.

This is because "there exists an identity element". We could include the empty set in these substructures but have the definition otherwise unchanged.

I'm curious as to what the consequences of such would be. If the empty subset of a group G were considered a subgroup of G, what would be some consequences in our important theorems?
 
Physics news on Phys.org
All theorems which require a reference to the identity would have to include "except for the empty set", an unneeded complication.
 
A subgroup is supposed to be a subset that's also a group. Since the empty set is not a group, it would be pretty odd to insist on calling it a subgroup.
 
Fredrik said:
A subgroup is supposed to be a subset that's also a group. Since the empty set is not a group, it would be pretty odd to insist on calling it a subgroup.

Clearly, if the empty set were considered a subgroup, it would also be considered a group..
 
1MileCrash said:
Clearly, if the empty set were considered a subgroup, it would also be considered a group..
OK. But that means that we would have to change the definition of "group" from

A pair ##(G,\star)## is said to be a group if ##\star## is a binary operation on ##G## that satisfies the group axioms.​

to

A pair ##(G,\star)## is said to be a group if ##G=\star=\varnothing## or ##\star## is a binary operation on ##G## that satisfies the group axioms.​

This doesn't look like an improvement.

Some theorems would remain intact. For example, consider the theorem "For all ##x,y,z\in G##, if ##x\star z=y\star z##, then ##x=y##." This statement is true when ##G=\varnothing##, because ##G## doesn't contain three elements ##x,y,z## such that the implication is false.
 
Fredrik said:
OK. But that means that we would have to change the definition of "group" from

A pair ##(G,\star)## is said to be a group if ##\star## is a binary operation on ##G## that satisfies the group axioms.​

to

A pair ##(G,\star)## is said to be a group if ##G=\star=\varnothing## or ##\star## is a binary operation on ##G## that satisfies the group axioms.​

This doesn't look like an improvement.

Some theorems would remain intact. For example, consider the theorem "For all ##x,y,z\in G##, if ##x\star z=y\star z##, then ##x=y##." This statement is true when ##G=\varnothing##, because ##G## doesn't contain three elements ##x,y,z## such that the implication is false.

It's not really suggesting that it is an "improvement", I'm merely asking the question "what happens if we relax our axioms." We don't have to call this new object a group any more, it doesn't matter.

Immediately, Lagrange's Theorem will no longer work, for example, and G/{} would be a quotient group since {} is normal, and it seemingly would be the set {} again (the definition would lead {} to have no left cosets) but under the operation associated with quotient groups rather than that of G.So a lot of things get weird or break right off the bat, but I'm wondering if anything more interesting would arise.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Replies
3
Views
435
Replies
17
Views
10K
Replies
6
Views
3K
Replies
7
Views
2K
Replies
3
Views
3K
Replies
4
Views
5K
Replies
1
Views
1K
Back
Top