The expectation value in quantum theory

aaaa202
Messages
1,144
Reaction score
2
Going from the abstract state vector lψ> and the mean-value of an observable x (operator) given by:

<x> = <ψlxlψ>

I want to show how that is done in the position basis:

So I take:

<x> = <ψlxlψ>

And insert completeness in front of the state vector to get the expansion involving the wave function:

1 = ∫lx><xl (1)

But when my teacher did this he insisted on using lx'> and furthermore that you actually inserted two different operators ∫lx'><x'l and ∫lx''><x''l
both of course represent the unit operator. But I am curious as to why you need to make this primes. Why isn't (1) sufficient? Where does confusion arise and why do you need two "different" unit operators?
 
Physics news on Phys.org
It may help to do this. Rather than using a continuous basis, use a discrete basis so the integral is a sum.

Then write out the product of two identity operators I*I where I = (sum)|n><n| (do it in a small case, such as 3 terms). Write it both ways. Using a different index, and the same index. You'll see you lose cross terms (if the basis is not orthonormal) by only using one index.

I hope I understood the question properly and that helps.
 
We usually denote the general (abstract, assumed linear and self-adjoint) operators by capitals, A, B, C as to distinguish them from the operators for position xi and momentum pi. And then yes, using primes to distinguish between different (but unitarily equivalent) sets of x's and p's expecially when using more then one generalized completion identities.

\langle \psi |A|\psi\rangle = \iint dx dx&#039; \langle \psi|x\rangle \langle x|A|x&#039; \rangle \langle x&#039;|\psi \rangle
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top