The factorial of a rational number, the gamma function not used

AI Thread Summary
The discussion revolves around a proposed formula related to the factorial of rational numbers, suggesting a connection to the gamma function. The user presents a new limit function, L(q,x), and explores its implications for factorials, including comparisons to known identities like Euler's reflection formula. The conversation also touches on the digamma function and the potential for deriving the Weierstrass representation of the gamma function from the defined factorial for rational inputs. Overall, the thread highlights the exploration of new mathematical relationships while seeking validation and clarification on the correctness of the presented formulas.
H.B.
Messages
20
Reaction score
0
My first question is: is this formula (at the bottom) a known formula?
In this subject i haven't explained how i build up the formula.
So far i think it is equal to the gamma function of Euler with

\Gamma\left(\frac{m_1}{m_2}+1\right)= \frac{m_1}{m_2}\ !

with

m_1 , m_2 \in \mathbf{N}

and

1<m_2

This gamma function however I didn't use.
The next limit i write like L(q,x) in de last formula.

L(q,x)=\prod^{\infty}_{k=0}\frac{(k+q+x) (k+1)}{(k+q)(k+1+x)}

with

q\neq

0,-1,-2,-3, …… and

x\neq

–1,-2,-3,-4, ……..

This is the formula where i use the factorial symbol ! because i think that it gives no problems with arguments with real values.

\frac{ m_1}{m_2}\ !=\left(m_1\ ! \prod^{ m_2-1}_{ i=1}L\left(1+ i\frac{ m_1}{m_2}, \frac{ m_1}{m_2}\right) \right)^\frac{1}{m_2}
 
 
with

m_1 , m_2 \in\mathbf{N}

and

1<m_2

Please feel free to react.
 
Mathematics news on Phys.org
Does it only work for positive natural numbers? Even if limited by those inputs I still like your 'q' and 'x' general form (assuming this identity is correct).
 
@mesa,
The input is a positive rational number m1/m2.
For an input of a negative rational number the relation between x! and (-x)! according to my definition (which i didn't show here) of the factorial (!) is:

x!(-x)!L(1-x,x)=1
 
You did write that (sorry, was too focused elsewhere).
 
I made a mistake in the last equation. It must be:
x!(-x)!=L(1-x,x)
This formula compares to Euler's reflection formula.
 
This is a factorial summation formula.

(x+y)!L(x+1,y)=x!y!
For example if y=0
(x+0)!L(x+1,0)=x!L(x+1,0)=x!=x!0!
If y=1
(x+1)!L(x+1,1)= (x+1)!/(x+1)=x!1!=x!
 
The next formula is about binomial coefficients.
If I use my definition of the factorial in this formula:
<br /> {x \choose y}=\frac{x\ !}{y\ !(x-y)\ !}<br />
(x, y are rational numbers) then the next equation appears :
<br /> {x \choose y}L(1+x-y,y)={x \choose y}\prod^{\infty}_{k=0}\frac{(k+x+1) (k+1)}{(k+1+x-y)(k+1+y)}={x \choose y}\prod^{\infty}_{k=1}\frac{(k+x) k}{(k+x-y)(k+y)}=1<br />
For example if y=0:
<br /> {x \choose 0}L(1+x,0)={x \choose 0}\prod^{\infty}_{k=0}\frac{(k+x+1) (k+1)}{(k+1+x)(k+1)}=1<br />
Or if x=1 and y=1/2
<br /> {1 \choose \frac{1}{2} }L(1+1-\frac{1}{2},\frac{1}{2})={1 \choose \frac{1}{2}}\prod^{\infty}_{k=0}\frac{(k+1+1) (k+1)}{(k+1+1-\frac{1}{2})(k+1+\frac{1}{2})}={1 \choose \frac{1}{2}}\prod^{\infty}_{k=1}\frac{(k+1) k}{(k+1-\frac{1}{2})(k+\frac{1}{2})}={1 \choose \frac{1}{2}}\prod^{\infty}_{k=1}\frac{(k+1) k}{(k+\frac{1}{2})^2}={1 \choose \frac{1}{2}}\frac {\pi}{4}=1<br />
Does this give the same results when using the 'gamma function'?
 
The remaining text (x=1 and y=1/2):

<br /> ={1 \choose \frac{1}{2} }L(1+1-\frac{1}{2},\frac{1}{2})={1 \choose \frac{1}{2}}\frac {\pi}{4}=1<br />
 
I think I can approach the Euler–Mascheroni constant with the next formula:

<br /> - \gamma =\lim_{n \rightarrow \infty}((\prod^{\infty}_{k=1}(\frac{(k+1)^\frac{1}{n} k^\frac{n-1}{n}}{(k+\frac{1}{n})})-1)n)<br />
 
  • #10
To complete the formula about the Euler-Mascheroni constant I'll add this one:

<br /> \gamma =<br /> \lim_{n \rightarrow \infty}<br /> ((\prod^{\infty}_{k=1}<br /> (\frac{(k+1)^\frac{-1}{n} k^\frac{n+1}{n}}{(k-\frac{1}{n})})-1)n)<br />
 
  • #11
I also think the digamma function for
<br /> x\in\mathbb{Q}<br /> can be expressed in the next formula:

<br /> \Psi(x)=-\gamma+\lim_{n\rightarrow\pm\infty}(n(1-L(x,\frac{1}{n}))<br />
 
  • #12
Of course you have already noticed that a multiplication formula can easely be derivered from the summation formula.For n \in \mathbf{N}, 1&lt;n and x \in \mathbf{Q}

<br /> (nx) ! = \frac {{x !}^n}{\prod\limits_{k=1}^{n-1}L\left(1+ kx,x\right)}<br />
 
  • #13
I think Leo Pochhammer did a good thing by changing the factorial function from a unary operation into a binary operation.

As I see it this is the definition of the rising factorial:
<br /> <br /> n, m \in \mathbf{N} \ (starting\ with\ zero),\ x \in \mathbf{C}<br /> <br /><br /> X1: \ Pochhammer(x,0)=1 \ (definition\ one)\\<br />
<br /> X2: \ Pochhammer(x,n+1)=Pochhammer(x,n)*(x+n)\ (definition\ two)<br />
My idea is to use the symbol ! as a binary operator like this:
<br /> X1: \ x!0=1\ (definition\ one)\\<br />
<br /> X2: \ x!(n+1)=x!n*(x+n)\ (definition\ two)<br />Now a theorem can be proved bij these definitions and mathematical induction.
Pochhammer(x,n+m)=Pochhammer(x,n)*Pochhammer(x+n,m)<br /> <br />This is my formula, I prefer to use x!y instead of Pochhammer(x,y):
<br /> <br /> for\ x,y \in \mathbf{Q}<br /> <br />
<br /> <br /> x!y=Pochhammer(x,y)=\frac{1!y}{L(x,y)}<br /> <br />
 
  • #14
My next formula is also about the digamma function or more precisely the derivative of the natural logarithm of the factorial function as I defined this, the input x shift by 1. I use the notation of the digamma function \Psi(x) because I think, and maybe somebody can prove this, it is the same as my formula.\Psi(x)=\lim_{h\rightarrow 0}\ln{h!^\frac{1}{h}}-\lim_{h\rightarrow 0}\ln{L(x,h)^\frac{1}{h}}=-\gamma-\lim_{h\rightarrow 0}\ln{L(x,h)^\frac{1}{h}}
 
  • #15
I Want to make a few more steps. Hopefully mathematically correct.<br /> \lim_{h\rightarrow 0}\ln{h!^\frac{1}{h}}=\lim_{h\rightarrow 0}\frac{\ln{(0+h)!}-\ln{0!}}{h}=\Psi(1)=-\gamma<br />and
<br /> \lim_{h\rightarrow 0}\ln{L(x,h)^\frac{1}{h}}=<br /> <br /> \lim_{h\rightarrow 0}\ln\prod^{\infty}_{k=0}{\left(\frac{(k+x+h) (k+1)}{(k+x)(k+1+h)}\right)^\frac{1}{h}}=\lim_{h\rightarrow 0}\sum^{\infty}_{k=0}{\ln\left(\frac{(k+x+h) (k+1)}{(k+x)(k+1+h)}\right)^\frac{1}{h}}=\lim_{h\rightarrow 0}\sum^{\infty}_{k=0}{\frac{\ln(k+x+h)-\ln(k+x)}{h}-\frac{\ln(k+1+h)-\ln(k+1)}{h}}=\sum^{\infty}_{k=0}{\lim_{h\rightarrow 0}\frac{\ln(k+x+h)-\ln(k+x)}{h}-\frac{\ln(k+1+h)-\ln(k+1)}{h}}=\sum^{\infty}_{k=0}{\frac{1}{k+x}-\frac{1}{k+1}}<br />
 
  • #16
I started with a definition of the factorial function for x is a rational number. Then I could derive a formula that gives the derivative of the natural logarithm of the factorial function (shifted by one this match with the digamma function). I think and tell me if I am wrong, it is easy to derive 'the Weierstrass representation‏ of the gamma function' by integrating this function and so on.
<br /> <br /> \Psi(x)=-\gamma +\sum^{\infty}_{k=0}{\left(\frac{1}{k+1}-\frac{1}{k+x}\right)}<br /> <br /> \Rightarrow<br /> <br />
<br /> <br /> \ln\Gamma(x)=-\gamma x+\sum^{\infty}_{k=0}{\left(\frac{x-1}{k+1}-\ln\frac{k+x}{k+1}\right)}+c<br /> <br /> \Rightarrow<br /> <br />
<br /> <br /> \Gamma(x)=e^{-\gamma x}e^{\sum\limits^{\infty}_{k=0}{\left(\frac{x-1}{k+1}-\ln\frac{k+x}{k+1}\right)}}e^c=<br /> <br />
<br /> e^{-\gamma x+c}\prod^{\infty}_{k=0}{e^{\left(\frac{x-1}{k+1}\right)}\left(\frac{k+1}{k+x}\right)}=<br /> <br />
<br /> <br /> e^{-\gamma x+c}\prod^{\infty}_{k=1}{e^{\left(\frac{x-1}{k}\right)}\left(\frac{k}{k+x-1}\right)}=<br /> <br />
According to the definition
<br /> <br /> \Gamma(1)=1\\<br /> <br /> c=\gamma\\<br /> <br /> \Gamma(x)=e^{-\gamma x+\gamma}\prod^{\infty}_{k=1}{e^{\frac{x-1}{k}}\frac{k}{k+x-1}}<br /> <br />
<br /> <br /> \Gamma(x+1)=<br /> <br /> e^{-\gamma x}\prod^{\infty}_{k=1}{e^{\frac{x}{k}}\frac{k}{k+x}}<br /> <br />
According to the definition
<br /> <br /> \Gamma(x+1)=\Gamma(x)x\\<br /> <br /> \Gamma(x)=\frac{e^{-\gamma x}}{x}\prod^{\infty}_{k=1}{e^{\frac{x}{k}}\frac{k}{k+x}}<br /> <br />
<br /> <br /> \Gamma(x)=\frac{e^{-\gamma x}}{x}\prod^{\infty}_{k=1}{e^{\frac{x}{k}}(1+\frac{x}{k})^{-1}}<br /> <br />
 
  • #17
I don't see where this is leading to - we are not a website to host a bunch of equations, especially without proof.
I closed the thread.
 
Back
Top