zylon said:
the way to compare spatially separated times is by comparing mutual events.
There is no such thing, in the sense you mean. "Events" are points in spacetime; they are things that happen at a particular place at a particular time according to a clock located at that place.
zylon said:
In this case, the mutual event is the absence of the black hole
The black hole is not a single point in space at a single moment of time, so it isn't an "event" (much less a "mutual event"), nor is its absence.
The black hole is a region of spacetime that can't send light signals out to infinity. So instead of thinking about "events", if you want to know whether a given traveler will enter that region of spacetime, you have to look at the global geometry of spacetime and how the traveler's worldline fits into that geometry. See below.
zylon said:
if the journey to the singularity takes longer than the lifetime of the hole, the traveler simply would never experience the event of reaching the singularity
Ok, this gives me a better understanding of why you are thinking about Hawking radiation for this scenario.
There is a way in which this can happen, but it is much more fruitful to think of it in the way implied by my comments above. You have a region of spacetime, the black hole, that can't send light signals to infinity. You have a traveler who has a specific worldline, i.e., a curve in spacetime. So the question is, does the traveler's worldline, as a curve in spacetime, intersect the black hole region of spacetime?
This is a simple question of geometry, just like the question of whether the equator on Earth intersects a given continent, for example, and it is best investigated using geometrical tools. My favorite tool is the Penrose diagram, which is a way of illustrating the geometric structure of a spacetime (which curves can enter which regions) that is symmetric enough that we can reduce the number of dimensions we need to look at to two. Take a look at this page, for example:
http://physics.oregonstate.edu/coursewikis/GGR/book/ggr/penrose
Figures 3 and 4 on that page show two Penrose diagrams: Figure 3 is for a black hole that forms from a collapsing massive object like a star, and then remains forever (i.e., no Hawking radiation). Figure 4 shows a black hole that forms by collapse but then eventually disappears by emitting Hawking radiation. In both diagrams, the region above and to the left of the 45 degree line marked "r = 2m" is the black hole, and the horizontal line marked "r = 0" is the singularity.
In Figure 3, note that the upper right end of the horizon line meets the point marked ##i^+##. That point is called "future timelike infinity"--it is where all timelike lines that extend infinitely far in the future end up on this diagram (which includes points and lines "at infinity" in order to make the geometric structure clearer). The fact that the horizon intersects the point at infinity means that any timelike worldline (meaning any observer) has only two choices: he can stay away from the hole forever (which means he has to accelerate somehow; he can't remain in free fall forever because he will then fall into the hole), or he can fall into the hole and be destroyed in the singularity.
In Figure 4, however, note that there is a vertical line marked "r = 0" above the upper right end of the horizon line. That means that an observer who waits long enough, by his own clock, can indeed free-fall inward and still avoid falling into the hole, by arriving at the "r = 0" line at some point above the upper right end of the "r = 2m" line (which is the point at which the hole disappears).