The math of physics - Calculus of Variation?

AI Thread Summary
The discussion explores the relationship between higher-dimensional theories in physics, such as String theory, M-theory, and F-theory, and their foundational principles like path integrals and Lagrangians. Key concepts include the applicability of Noether's theorem, symmetry, and the geodesics of General Relativity across different dimensions, all expressed through functional calculus of variation. However, there is a lack of clarity regarding the understanding of functional calculus, particularly in the context of integrating over function spaces and the relationship between functional differentiation and integration. Questions arise about the Feynman path integral and its implications for quantum mechanics, specifically regarding the nature of paths and their weighting in the integral. Further exploration and study of these concepts are deemed necessary for a deeper understanding of their implications in physics.
Mike2
Messages
1,312
Reaction score
0
We escape the problems of particle physics by exploring the higher dimensions of String theory. When we have questions about String theory, we jump to the higher dimensions of M-theory to answer them. And some have purposed to use the higher dimensions of F-theory to answer questions about M-theory.

Yet, we do have principles that apply no matter what dimensionality we go to. Path integrals, the action of the Lagrangians, Noether's theorem, various kinds of symmetry, the geodesics of General Relativity. All these principles are applicable at every level of dimensionality we explore, and they are all expressible in terms of the functional calculus of variation. Least action is where the functional derivative is zero. The path integral is a functional integral integrated over the variation of a function.

But functional calculus is not well understood yet. Integrating over function spaces that include the function and how it may vary is not well defined. It has yet to be developed whether even functional differentiation is the inverse of functional integration. I think more study needs to be given this subject.

I am attempting to develop physics from logic. Your insights are
appreciated.

More at:
http://www.sirus.com/users/mjake/StringTh.html
 
Last edited by a moderator:
Mathematics news on Phys.org
Do you mean YOU don't understand functional analysis? I believe it's a fairly well developed field.

Or perhaps you mean physicists don't understand functional analysis. That might well be true.
 
The Feynman path integral used in quantum mechanics is an integral over the function space of admissible functions. What is the inverse operation of this path integral? Is it the variation with respect to how a function may vary? References please.
 
I'm not real clear on what Feynman is accomplishing with a path integral. He integrates over every possible path. Is this the same as integrating over a volume through which the paths may travel? Each path is weighted by the exponent of the action integral. Is this an average characteristic of all paths? Or maybe this is another way of finding some topological invariant of the space of the paths. Any clues?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top