- 20,650
- 27,840
Lie Derivatives
A Lie derivative is in general the differentiation of a tensor field along a vector field. This allows several applications since a tensor field includes a variety of instances, e.g. vectors, functions, or differential forms. In the case of vector fields, we additionally get a Lie algebra structure. This is, although formulated in a modern language, the actual reason why Lie algebras have been considered in the first place: as the tangent bundle of Lie groups which are themselves the invariants that appear as symmetry groups in the standard model of particle physics or more generally in the famous theorem of Emmy Noether, which is actually a theorem about invariants of differential equations (see [9],[10]). The Jacobi identity, e.g., which together with anti-commutativity defines a Lie algebra is simply a manifestation of the Leibniz rule of differentiation.Continue reading ...
Last edited: